Thermally induced apoptosis for tumors depends mainly on the intrinsic characteristics of biological tissues as well as treatment temperature profile during magnetic hyperthermia.Further,treatment temperature distribu...Thermally induced apoptosis for tumors depends mainly on the intrinsic characteristics of biological tissues as well as treatment temperature profile during magnetic hyperthermia.Further,treatment temperature distribution inside tumor depends on the injection behavior of irregular tumors,such as the injection dose and the injection location of nanofluids.In order to improve the treatment effect,the simulated annealing algorithm is adopted in this work to optimize the nanofluid injection behavior,and the improved Arrhenius model is used to evaluate the malignant ablations for three typical malignant tumor cell models.In addition,both the injection behavior optimization and the mass diffusion of nanofluid are both taken into consideration in order to improve the treatment effect.The simulation results demonstrate that the injection behavior can be optimized effectively by the proposed optimization method before therapy,the result of which can also conduce to improving the thermal apoptosis possibility for proposed typical malignant cells.Furthermore,an effective approach is also employed by considering longer diffusion duration and correct power dissipation at the same time.The results show that a better result can then be obtained than those in other cases when the power dissipation of MNPs is set to be QMNP=5.4×10^(7)W·m^(3) and the diffusion time is 16 h.展开更多
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc...This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.展开更多
The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and...The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined.Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration,three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution(the steady-state),for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.展开更多
For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported...For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.展开更多
A gas-liquid mass transfer model based on an unsteady state film mechanism applied to a single bubble is presented. The mathematical model was solved using Laplace transform to obtain an analytical solution of concent...A gas-liquid mass transfer model based on an unsteady state film mechanism applied to a single bubble is presented. The mathematical model was solved using Laplace transform to obtain an analytical solution of concentration profile in terms of the radial position r and time t. The dynamic mass transfer flux was deduced and the influence of the bubble size was also determined. A mathematical method for deducing the average mass transfer flux directly from the Laplace transformed concentration is presented. Its accuracy is verified by comparing the numerical results with those from the indirect method. The influences of the model parameters, namely, the bubble size R, liquid film thickness δ, and the surface renewal constant s on the average mass transfer flux were investigated. The proposed model is useful for a better understanding of the mass transfer mechanism and an optimum design of gas-liquid contact equipment.展开更多
Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.0...Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.展开更多
To evaluate the pollutant dispersion in background turbulent flows, most researches focus on statistical variation of concentrations or its fluctuations. However, those time-averaged quantities may be insufficient for...To evaluate the pollutant dispersion in background turbulent flows, most researches focus on statistical variation of concentrations or its fluctuations. However, those time-averaged quantities may be insufficient for risk assessment, because there emerge many high-intensity pollutant areas in the instantaneous concentration field. In this study, we tried to estimate the frequency of appearance of the high concentration areas in a turbulent flow based on the Probability Density Function (PDF) of concentration. The high concentration area was recognized by two conditions based on the concentration and the concentration gradient values. We considered that the estimation equation for the frequency of appearance of the recognized areas consisted of two terms based on each condition. In order to represent the two terms with physical quantities of velocity and concentration fields, simultaneous PIV (Particle Image Velocimetry) and PLIF (Planar Laser-Induced Fluorescence) measurement and PLIF time-serial measurement were performed in a quasi-homogeneous turbulent flow. According to the experimental results, one of the terms, related to the condition of the concentration, was found to be represented by the concentration PDF, while the other term, by the streamwise mean velocity and the integral length scale of the turbulent flow. Based on the results, we developed an estimation equation including the concentration PDF and the flow features of mean velocity and integral scale of turbulence. In the area where the concentration PDF was a Gaussian one, the difference between the frequencies of appearance estimated by the equation and calculated from the experimental data was within 25%, which showed good accuracy of our proposed estimation equation. Therefore, our proposed equation is feasible for estimating the frequency of appearance of high concentration areas in a limited area in turbulent mass diffusion.展开更多
This paper establishes the mathematical model in calculating the effective thermal conductivity and the effective mass diffusivity of dried layer of beef undergoing freeze drying process.First,experimental measurement...This paper establishes the mathematical model in calculating the effective thermal conductivity and the effective mass diffusivity of dried layer of beef undergoing freeze drying process.First,experimental measurements are done on the dehydrated quantity as well as temperature variations at different locations of the beef steak.Then the effective thermal conductivity and the effective mass diffusivity are calculated by applying the above mathematical model on the data of the dehydrated quantity.These two coefficients are further used in the calculation of temperature distribution.The result is in agreement with the measurement,thus confirming the correctness of the model and the values of the coefficients.展开更多
The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are als...The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.展开更多
This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is d...This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is disclosed in the neighborhood of stagnation point.Features of heat transport are characterized with Newtonian heating and variable thermal conductivity.Mass transport is carried out with first order chemical reaction and variable mass diffusivity.Resulting governing equations are transformed by implementation of appropriate transformations.Analytical convergent series solutions are computed via homotopic technique.Physical aspects of numerous parameters are discussed through graphical data.Drag force coefficient,Sherwood and Nusselt numbers are illustrated through graphs corresponding to various pertinent parameters.Graphical discussion reveals that conjugate and constructive chemical reaction parameters enhance the temperature and concentration distributions,respectively.展开更多
A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equatio...A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.展开更多
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e...As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.展开更多
Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which p...Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which pose a great challenge for further study and application.To solve this problem,computational mass transfer(CMT)emerged and has been proved to be effective in deeply exploring the mass transfer behavior of particle-fluid systems.First,this paper reviews recent gas-solid numerical studies of turbulence issues from empirical to theoretical,then discusses interphase mass transfer rate models and the interfacial interaction force.Second,the present study particularly reviews researches on mass transfer process of fixed and fluidized regime by CMT,providing reliable analysis of turbulent anisotropy diffusivity as well as multiscale structure and presenting theoretical instruction for the industrial optimization of mass transfer processes in chemical engineering.展开更多
In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed ...In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed void shapes: circular, ellipse, and cardioid. Void morphological evolution is governed by the competition between the electric field and surface capillary force. In the developed model, both the electric field and capillary force on the void's surface are solved analytically. Based on the mass conversation principle, the normal velocity on the void surface during diffusion is obtained. The void morphological evolution behavior is investigated, and a physical model is developed to predict void collapse to a crack or to split into sub-voids under electric current. It is noted that when the electric current is being applied from the horizontal direction, a circular void may either move stably along the electric current direction or collapse to a finger shape, depending on the relative magnitude of the electric current and surface capillary force. However, the elliptical-shaped void will elongate along the electric current direction and finally collapse to the finger shape. On the other hand, the cardioid-shaped void could bifurcate into two sub-voids when the electric current reaches a critical value. The theoretical predictions agree well with the experimental observations.展开更多
This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three c...This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.展开更多
We propose an indirect-link-weakened mass diffusion method(IMD), by considering the indirect linkage and the source object heterogeneity effect in the mass diffusion(MD) recommendation method. Experimental results...We propose an indirect-link-weakened mass diffusion method(IMD), by considering the indirect linkage and the source object heterogeneity effect in the mass diffusion(MD) recommendation method. Experimental results on the MovieLens, Netflix, and RYM datasets show that, the IMD method greatly improves both the recommendation accuracy and diversity, compared with a heterogeneity-weakened MD method(HMD), which only considers the source object heterogeneity. Moreover, the recommendation accuracy of the cold objects is also better elevated in the IMD than the HMD method. It suggests that eliminating the redundancy induced by the indirect linkages could have a prominent effect on the recommendation efficiency in the MD method.展开更多
The investigation of radiation-absorption,chemical reaction,Hall and ion-slip impacts on unsteady MHD free convective laminar flow of an incompressible viscous,electrically conducting and heat generation/absorbing flu...The investigation of radiation-absorption,chemical reaction,Hall and ion-slip impacts on unsteady MHD free convective laminar flow of an incompressible viscous,electrically conducting and heat generation/absorbing fluid enclosed with a semi-infinite porous plate within a rotating frame has been premeditated.The plate is assumed to be moving with a constant velocity in the direction of fluid movement.A uniform transverse magnetic field is applied at right angles to the porous surface,which is absorbing the fluid with a suction velocity changing with time.The non-dimensional governing equations for present investigation are solved analytically making use of two term harmonic and non-harmonic functions.The graphical results of velocity,temperature and concentration distributions on the analytical solutions are displayed and discussed with reference to pertinent parameters.It is found that the velocity profiles decreased with an increasing in Hartmann number,rotation parameter,the Schmidt number,heat source parameter,while it increased due to an increase in permeability parameter,radiation-absorption parameter,Hall and ion slip parameters.However,the temperature profile is an increasing function of radiation-absorption parameter,whereas an increase in chemical reaction parameter,the Schmidt number Sc or frequency of oscillations decrease the temperature profile on cooling.Also,it is found that the concentration profile is decreased with an escalating in the Schmidt number or the chemical reaction parameter.展开更多
The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent wit...The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent with the experimental results.Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed.However,a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic circle.The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity with a new term,or by using some analogy.In this study,a new constitutive relation for momentum transport and a momentum balance equation are obtained based on the molecular kinetic theory.The new constitutive relation preserves the symmetry of the deviation stress,and the momentum balance equation satisfies Galilean invariance.The results show that for Poiseuille flow in a circular micro-tube,self-diffusion in micro-flow needs considering even if the local density gradient is very low.展开更多
Collaborative filtering algorithms(CF)and mass diffusion(MD)algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload.However,both algorithms suffer f...Collaborative filtering algorithms(CF)and mass diffusion(MD)algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload.However,both algorithms suffer from data sparsity,and both tend to recommend popular products,which have poor diversity and are not suitable for real life.In this paper,we propose a user internal similarity-based recommendation algorithm(UISRC).UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity.The internal similarity of users is combined to modify the recommendation score to make score predictions and suggestions.Simulation experiments on RYM and Last.FM datasets,the results show that UISRC can obtain better recommendation accuracy and a variety of recommendations than traditional CF and MD algorithms.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62071124)the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01464)+2 种基金the Fund from the Education Department of Fujian Province, China (Grant No. JAT190013)the Fund from the Fuzhou University, China (Grant No. GXRC-19044)the Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) (CNPq) (Grant No. 309244/2018-8)
文摘Thermally induced apoptosis for tumors depends mainly on the intrinsic characteristics of biological tissues as well as treatment temperature profile during magnetic hyperthermia.Further,treatment temperature distribution inside tumor depends on the injection behavior of irregular tumors,such as the injection dose and the injection location of nanofluids.In order to improve the treatment effect,the simulated annealing algorithm is adopted in this work to optimize the nanofluid injection behavior,and the improved Arrhenius model is used to evaluate the malignant ablations for three typical malignant tumor cell models.In addition,both the injection behavior optimization and the mass diffusion of nanofluid are both taken into consideration in order to improve the treatment effect.The simulation results demonstrate that the injection behavior can be optimized effectively by the proposed optimization method before therapy,the result of which can also conduce to improving the thermal apoptosis possibility for proposed typical malignant cells.Furthermore,an effective approach is also employed by considering longer diffusion duration and correct power dissipation at the same time.The results show that a better result can then be obtained than those in other cases when the power dissipation of MNPs is set to be QMNP=5.4×10^(7)W·m^(3) and the diffusion time is 16 h.
文摘This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.
基金Abdus Salam School of Mathematical Sciences, GC University, Lahore, PakistanHigher Education Commission of Pakistan, for generous supporting and facilitating this research work
文摘The problem of hydromagnetic free convection flow over a moving infinite vertical plate with Newtonian heating, mass diffusion and chemical reaction in the presence of a heat source is completely solved. Radiative and porous effects are not taken into consideration but they can be immediately included by a simple rescaling of Prandtl number and magnetic parameter. Exact general solutions for the dimensionless velocity and concentration fields and the corresponding Sherwood number and skin friction coefficient are determined under integral form in terms of error function or complementary error function of Gauss. They satisfy all imposed initial and boundary conditions and can generate exact solutions for any problem with technical relevance of this type. As an interesting completion, uncommon in the literature, the differential equations which describe the thermal, concentration and momentum boundary layer, as well as the exact expressions for the thicknesses of thermal, concentration or velocity boundary layers were determined.Numerical results have shown that the thermal boundary layer thickness decreases for increasing values of Prandtl number and the concentration boundary layer thickness is decreasing with Schmidt number. Finally, for illustration,three special cases are considered and the influence of physical parameters on some fundamental motions is graphically underlined and discussed. The required time to reach the flow according with post-transient solution(the steady-state),for cosine/sine oscillating concentrations on the boundary is graphically determined. It is found that, the presence of destructive chemical reaction improves this time for increasing values of chemical reaction parameter.
文摘For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.
基金Supported by the National Science Foundation of China (No. 20276035) and the SINOPEC Fundamental Research Foundation (No.X500021).
文摘A gas-liquid mass transfer model based on an unsteady state film mechanism applied to a single bubble is presented. The mathematical model was solved using Laplace transform to obtain an analytical solution of concentration profile in terms of the radial position r and time t. The dynamic mass transfer flux was deduced and the influence of the bubble size was also determined. A mathematical method for deducing the average mass transfer flux directly from the Laplace transformed concentration is presented. Its accuracy is verified by comparing the numerical results with those from the indirect method. The influences of the model parameters, namely, the bubble size R, liquid film thickness δ, and the surface renewal constant s on the average mass transfer flux were investigated. The proposed model is useful for a better understanding of the mass transfer mechanism and an optimum design of gas-liquid contact equipment.
基金Supported by the National Natural Science Foundation of China(21376163)
文摘Simulations of adsorption process using the Reynolds mass flux model described in Part I of these serial articles are presented. The object of the simulation is the methylene chloride adsorption in a packed column(0.041 m id,packed with spherical activated carbon up to a length of 0.2 m). With the Reynolds mass flux model,breakthrough/regeneration curves, concentration and temperature as well as the velocity distributions can be obtained. The simulated results are compared with the experimental data reported in the literature and satisfactory agreement is found both in breakthrough/regeneration curves and temperature curves. Moreover,the anisotropic turbulent mass diffusion is characterized and discussed.
文摘To evaluate the pollutant dispersion in background turbulent flows, most researches focus on statistical variation of concentrations or its fluctuations. However, those time-averaged quantities may be insufficient for risk assessment, because there emerge many high-intensity pollutant areas in the instantaneous concentration field. In this study, we tried to estimate the frequency of appearance of the high concentration areas in a turbulent flow based on the Probability Density Function (PDF) of concentration. The high concentration area was recognized by two conditions based on the concentration and the concentration gradient values. We considered that the estimation equation for the frequency of appearance of the recognized areas consisted of two terms based on each condition. In order to represent the two terms with physical quantities of velocity and concentration fields, simultaneous PIV (Particle Image Velocimetry) and PLIF (Planar Laser-Induced Fluorescence) measurement and PLIF time-serial measurement were performed in a quasi-homogeneous turbulent flow. According to the experimental results, one of the terms, related to the condition of the concentration, was found to be represented by the concentration PDF, while the other term, by the streamwise mean velocity and the integral length scale of the turbulent flow. Based on the results, we developed an estimation equation including the concentration PDF and the flow features of mean velocity and integral scale of turbulence. In the area where the concentration PDF was a Gaussian one, the difference between the frequencies of appearance estimated by the equation and calculated from the experimental data was within 25%, which showed good accuracy of our proposed estimation equation. Therefore, our proposed equation is feasible for estimating the frequency of appearance of high concentration areas in a limited area in turbulent mass diffusion.
基金the National Natural Science Foundation of China!(No.597760 14 )
文摘This paper establishes the mathematical model in calculating the effective thermal conductivity and the effective mass diffusivity of dried layer of beef undergoing freeze drying process.First,experimental measurements are done on the dehydrated quantity as well as temperature variations at different locations of the beef steak.Then the effective thermal conductivity and the effective mass diffusivity are calculated by applying the above mathematical model on the data of the dehydrated quantity.These two coefficients are further used in the calculation of temperature distribution.The result is in agreement with the measurement,thus confirming the correctness of the model and the values of the coefficients.
基金Supported by the National Science Foundation of China(20736005).ACKNOWLEDGEMENTSThe authors acknowledge the assistance from thestaff in the State Key Laboratories of Chemical Engineering (Tianjin University).
文摘The recent works on the development of computational mass transfer (CMT) method and its applications in chemical process simulation are reviewed. Some development strategies and challenges in future research are also discussed.
文摘This article concentrates on the properties of three-dimensional magneto-hydrodynamic flow of a viscous fluid saturated with Darcy porous medium deformed by a nonlinear variable thickened surface.Analysis of flow is disclosed in the neighborhood of stagnation point.Features of heat transport are characterized with Newtonian heating and variable thermal conductivity.Mass transport is carried out with first order chemical reaction and variable mass diffusivity.Resulting governing equations are transformed by implementation of appropriate transformations.Analytical convergent series solutions are computed via homotopic technique.Physical aspects of numerous parameters are discussed through graphical data.Drag force coefficient,Sherwood and Nusselt numbers are illustrated through graphs corresponding to various pertinent parameters.Graphical discussion reveals that conjugate and constructive chemical reaction parameters enhance the temperature and concentration distributions,respectively.
基金Supported by the National lqatural Science Foundation of China (20736005).
文摘A computational mass transfer model is proposed for predicting the concentration profile and Murphree efficiency of sieve tray distillation column. The proposed model is based on using modified c'2 -εc' two equations formulation for closing the differential turbulent mass transfer equation with improvement by considering the vapor injected from the sieve hole to be three dimensional. The predicted concentration distributions by using proposed model were checked by experimental work conducted on a sieve tray simulator of 1.2 meters in diameter for desorbing the dissolved oxygen in the feed water by blowing air. The model predictions were confirmed by the experimental measurement. The validation of the proposed model was further tested by comparing the simulated result with the performance of an industrial scale sieve tray distillation column reported by Kunesh et al. for the stripping of toluene from its water solution. The predicted outlet concentration of each tray and the Murphree tray efficiencies under different operating conditions were in agreement with the published data. The simulated turbulent mass transfer diffusivity on each tray was within the range of the experimental result in the same sieve column reported by Cai et al. In addition, the prediction of the influence of sieve tray structure on the tray efficiency by using the proposed model was demonstrated.
基金supported by the National Natural Science Foundation of China(U21A20332,52103226,52202275,52203314,and 12204253)the Distinguished Young Scholars Fund of Jiangsu Province(BK20220061)the Fellowship of China Postdoctoral Science Foundation(2021 M702382)。
文摘As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.
基金the NSFC Project(grant No.22078230)the State Key Laboratory of Heavy Oil Processing(grant No.SKLHOP202202008)the National Key Researchh and Development Program ofC hina(granNt o.2018YFE0111100).
文摘Particle-fluid system is one of the most popular systems in chemical processes.Owing to complex interface structure and high-velocity turbulence,the momentum and mass transfer exhibit nonlinear characteristics,which pose a great challenge for further study and application.To solve this problem,computational mass transfer(CMT)emerged and has been proved to be effective in deeply exploring the mass transfer behavior of particle-fluid systems.First,this paper reviews recent gas-solid numerical studies of turbulence issues from empirical to theoretical,then discusses interphase mass transfer rate models and the interfacial interaction force.Second,the present study particularly reviews researches on mass transfer process of fixed and fluidized regime by CMT,providing reliable analysis of turbulent anisotropy diffusivity as well as multiscale structure and presenting theoretical instruction for the industrial optimization of mass transfer processes in chemical engineering.
基金supported by the National Natural Science Foundation of China (Grant 11572249)the Aerospace Technology Foundation (Grant N2014KC0068)the Aeronautical Science Foundation of China (Grant N2014KC0073)
文摘In this work, analysis of electromigration-induced void morphological evolution in solder interconnects is performed based on mass diffusion theory. The analysis is conducted for three typical experimentally observed void shapes: circular, ellipse, and cardioid. Void morphological evolution is governed by the competition between the electric field and surface capillary force. In the developed model, both the electric field and capillary force on the void's surface are solved analytically. Based on the mass conversation principle, the normal velocity on the void surface during diffusion is obtained. The void morphological evolution behavior is investigated, and a physical model is developed to predict void collapse to a crack or to split into sub-voids under electric current. It is noted that when the electric current is being applied from the horizontal direction, a circular void may either move stably along the electric current direction or collapse to a finger shape, depending on the relative magnitude of the electric current and surface capillary force. However, the elliptical-shaped void will elongate along the electric current direction and finally collapse to the finger shape. On the other hand, the cardioid-shaped void could bifurcate into two sub-voids when the electric current reaches a critical value. The theoretical predictions agree well with the experimental observations.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) the Doctor Foundation of Shandong Province of China (BS2010NJ005)
文摘This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175079)the Young Scientist Training Project of Jiangxi Province,China(Grant No.20133BCB23017)
文摘We propose an indirect-link-weakened mass diffusion method(IMD), by considering the indirect linkage and the source object heterogeneity effect in the mass diffusion(MD) recommendation method. Experimental results on the MovieLens, Netflix, and RYM datasets show that, the IMD method greatly improves both the recommendation accuracy and diversity, compared with a heterogeneity-weakened MD method(HMD), which only considers the source object heterogeneity. Moreover, the recommendation accuracy of the cold objects is also better elevated in the IMD than the HMD method. It suggests that eliminating the redundancy induced by the indirect linkages could have a prominent effect on the recommendation efficiency in the MD method.
文摘The investigation of radiation-absorption,chemical reaction,Hall and ion-slip impacts on unsteady MHD free convective laminar flow of an incompressible viscous,electrically conducting and heat generation/absorbing fluid enclosed with a semi-infinite porous plate within a rotating frame has been premeditated.The plate is assumed to be moving with a constant velocity in the direction of fluid movement.A uniform transverse magnetic field is applied at right angles to the porous surface,which is absorbing the fluid with a suction velocity changing with time.The non-dimensional governing equations for present investigation are solved analytically making use of two term harmonic and non-harmonic functions.The graphical results of velocity,temperature and concentration distributions on the analytical solutions are displayed and discussed with reference to pertinent parameters.It is found that the velocity profiles decreased with an increasing in Hartmann number,rotation parameter,the Schmidt number,heat source parameter,while it increased due to an increase in permeability parameter,radiation-absorption parameter,Hall and ion slip parameters.However,the temperature profile is an increasing function of radiation-absorption parameter,whereas an increase in chemical reaction parameter,the Schmidt number Sc or frequency of oscillations decrease the temperature profile on cooling.Also,it is found that the concentration profile is decreased with an escalating in the Schmidt number or the chemical reaction parameter.
基金Project supported by the National Natural Science Foundation of China–Outstanding Youth Foundation(Grant No.51522903)the National Natural Science Foundation of China(Grant Nos.11602276 and 51479094)the Fund from the Key Laboratory for Mechanics in Fluid Solid Coupling Systems of the Chinese Academy of Sciences。
文摘The classical Navier–Stokes equation(NSE)is the fundamental partial differential equation that describes the flow of fluids,but in certain cases,like high local density and temperature gradient,it is inconsistent with the experimental results.Some extended Navier–Stokes equations with diffusion terms taken into consideration have been proposed.However,a consensus conclusion on the specific expression of the additional diffusion term has not been reached in the academic circle.The models adopt the form of the generalized Newtonian constitutive relation by substituting the convection velocity with a new term,or by using some analogy.In this study,a new constitutive relation for momentum transport and a momentum balance equation are obtained based on the molecular kinetic theory.The new constitutive relation preserves the symmetry of the deviation stress,and the momentum balance equation satisfies Galilean invariance.The results show that for Poiseuille flow in a circular micro-tube,self-diffusion in micro-flow needs considering even if the local density gradient is very low.
基金supported by the National Natural Science Foundation of China(Grant No.61703212).
文摘Collaborative filtering algorithms(CF)and mass diffusion(MD)algorithms have been successfully applied to recommender systems for years and can solve the problem of information overload.However,both algorithms suffer from data sparsity,and both tend to recommend popular products,which have poor diversity and are not suitable for real life.In this paper,we propose a user internal similarity-based recommendation algorithm(UISRC).UISRC first calculates the item-item similarity matrix and calculates the average similarity between items purchased by each user as the user’s internal similarity.The internal similarity of users is combined to modify the recommendation score to make score predictions and suggestions.Simulation experiments on RYM and Last.FM datasets,the results show that UISRC can obtain better recommendation accuracy and a variety of recommendations than traditional CF and MD algorithms.