The training is now expanding in quantity and variety. Massification--which sank--forces universities to meet the challenge of public diversity and to justify pedagogical research. This article takes into consideratio...The training is now expanding in quantity and variety. Massification--which sank--forces universities to meet the challenge of public diversity and to justify pedagogical research. This article takes into consideration particular way of these new requirements heuristic and praxeological referred to teaching that must take into account the expectation of the learner. This work is in a descriptive and explanatory approach and aims to promote higher teaching practices through the new interactive technology tools to stimulate educational innovation within the university system. The aim of this work is the inclusion of massification to contribute to the development of a model for interactivity and effectiveness of learning. This model was developed from a theoretical approach since the state of the art and an empirical approach for several experiments. The study focused on a database C2i exams "IT and lnternet certification of all learners of the Academy of Montpeilier (n = 4,254) on the online formapro platform". The results have shown that the success rate is highly correlated with the duration of prior self. The integration of these technologies in universities offers interactivity and learning environment for adjusting teaching practices and acquiring new skills.展开更多
Four financial models of massification of higher education are discussed in this essay.They are American model,Western European model,Southeast Asian and Latin American model and the transition countrie’s model.The c...Four financial models of massification of higher education are discussed in this essay.They are American model,Western European model,Southeast Asian and Latin American model and the transition countrie’s model.The comparison of the four models comes to the conclusion that taking advantage of nongovernmental funding is fundamental to dealing with financial difficulty faced by higher education.As a result,it can be argued that the declining of higher education quality does not necessarily have to do with schooling system.On the contrary,the development of private higher education helps the activation mechanism of competition so as to cultivate talents needed by the society.展开更多
Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reac...Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.展开更多
The Boya-02 kimberlite was identified at depth by geophysical survey work (a single-probe AM survey in 1997 and a gravity survey in 2006) that De Beers DRC Exploration carried out around anomaly 193/172/0019. This ano...The Boya-02 kimberlite was identified at depth by geophysical survey work (a single-probe AM survey in 1997 and a gravity survey in 2006) that De Beers DRC Exploration carried out around anomaly 193/172/0019. This anomaly located approximately 50 km southwest of the town of Mbuji-Mayi in the Kasaï-Oriental Province in the DRC should therefore be the subject of detailed exploration with the aim of better identifying and describing this kimberlite. Thus, through exploratory work and cross-checking of geophysical and geological data, the discovery of this Massif was made by drilling on the aeromagnetic anomaly 193/172/X298. Based on drilling, sampling and laboratory petrographic analysis reports, the Boya-02 kimberlite was classified among highly diluted re-sedimented volcaniclastic kimberlites (KVR), rich in olivine and incidentally in quartz and poor in juvenile substances. This kimberlite represents a deposit of very low economic interest following extremely high dilution. The Boya-02 kimberlite was modeled using ground magnetism data. It is a complex anomaly comprising 2 components with variable amplitude appearing on a subtly magnetized linear detail. The modeled dimensions of two components of this anomaly are 0.32 Ha and 0.2 Ha at depths of 32 m & 14 m for the deposits to the West and the East respectively. Garnet data for the Boya-02 occurrence reports a maximum Pmin value of 49.7 kbar (207 garnets). These data demonstrate the high diamond potential which assumes a conductive cratonic geotherm of 40 mWm<sup>2</sup>.展开更多
The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are ...The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration.展开更多
University education is the epitome of education that countries leverage for the delivery of national strategic plans,through the creation of skilled workforce for socio-economic development.Kenyan public universities...University education is the epitome of education that countries leverage for the delivery of national strategic plans,through the creation of skilled workforce for socio-economic development.Kenyan public universities have experienced massification in the past three decades,a phenomenon resulting from the democratization of education,the advent of knowledge economy,and globalization.The purpose of this study was to investigate whether the consequences of massification caused Juakalization in higher education in Kenya.Juakalization is the dilution and conversion of high quality university education to assume an artisan nature of mass production of low quality and unstandardized educational product.The study used a systematic review of literature and public documents to analyze the consequences of massification in Kenya's higher education.Findings indicate that the consequences of massification of overcapacity and insufficient infrastructure led to mass production of a low quality non-standardized university product.The researcher compares the Kenyan Jua Kali artisan production process to that of higher education,where both work under adverse conditions to produce mass low quality products.This analogy acts as a metaphor to describe the dilution and conversion of higher education to that of artisanship and coins the term Juakalization to describe this process in higher education.展开更多
Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tecton...Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral-subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.26-1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282-2 Ma) and in the Late Permian (255-3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279-4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low-K tholeiitic series, and are characterized by low rare earth element (REE) abundances, fiat REE pattern, weak positive Eu anomalies (JEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high-aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc-alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two-stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo-Asian oceanic plate beneath the Khanka Massif and collision between the arc and continent (Khanka Massif) happened in the late stage of the Late Paleozoic.展开更多
The Helanshan tectonic belt is located to the west of the Ordos Basin, and separates the Alxa(or Yinshan)Massif to the west from the Ordos block to the east. Triassic sedimentation in the Helanshan tectonic belt recor...The Helanshan tectonic belt is located to the west of the Ordos Basin, and separates the Alxa(or Yinshan)Massif to the west from the Ordos block to the east. Triassic sedimentation in the Helanshan tectonic belt records important information about tectono-sedimentary process between the Alxa Massif and the Ordos block. Detailed geological mapping and investigation on the lithological package, sedimentary facies and paleocurrent orientation have been conducted on the Middle to Upper Triassic clastic rocks in the Helanshan tectonic belt. The succession is characterized by upward-fining sequence and comprises coarse grained alluvial-fluvial facies in the lower part as well as deltaic-lacustrine facies in the upper part. Based on detailed study and comparisons on the sedimentary sequence along various sections, the Middle to Upper Triassic strata have been revealed that show clear southeastward-deepening sedimentary differentiation and transgression from southwest to northeast, which are consistent with the southeastward flowing paleocurrent. These features indicate a southeastward-dipping paleogeography in the Helanshan tectonic belt, which was original western part of southeastward orientated fluviallacustrine system in the northwestern proto-Ordos Basin. Further to the east, the Triassic succession in the Ordos Basin displays gradually thickening and alluvial-fluvial system flowed from southeast to northwest, showing a huge thick sedimentary wedge in the western basin margin. Together with the Late Permiane Early Triassic closure of the Paleo-Asian Ocean to the north, the Late Triassic extensional structures and diabase dykes in the Helanshan tectonic belt, all the above sedimentary features could be mostly interpreted as records of an extensional basin correlated to post-collisional collapse of the Central Asian Orogenic Belt.展开更多
The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region...The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.展开更多
Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the ...Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the Precambrian basement on Songnen massif does not extend largely according to the isotopic dating results of core from basement,(2)the existence of gneiss from deep drill holes展开更多
Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji M...Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.展开更多
The Songnen–Zhangguangcai Range Massif(SZRM)is located in the eastern Central Asian Orogenic Belt and crops out over an extensive part of NE China.The massif was originally thought to contain numerous Precambrian ter...The Songnen–Zhangguangcai Range Massif(SZRM)is located in the eastern Central Asian Orogenic Belt and crops out over an extensive part of NE China.The massif was originally thought to contain numerous Precambrian terranes(e.g.,Xingdong,Dongfengshan,Yimianpo and Zhangguangcailing groups).However,more recent zircon U–Pb dating indicates that the majority of these so-called Precambrian sedimentary and igneous rocks actually formed during either the Paleozoic or Mesozoic and contain only minor Precambrian components(Wang et al.,2014).The presence of Neoproterozoic and Paleoproterozoic detrital zircons with magmatic origins from and Paleozoic units of the SZRM indicating that this area occurs Proterozoic magmatism(Wang et al.,2014),whereas no Proterozoic magmastism has been found.Recently,Pei et al.(2007)reported the ca.1800Ma magmastism,as evidenced by the data of exploration drillholes in the southern Songliao basin.However,an alternative view is that the basement within the SZRM is predominantly Phanerozoic,as evidenced by the presence of Paleozoic fossils and comparatively rare geochronological data(Guo and Liu,1985;Wu et al.,2011),meaning that the ca.1800 Ma rocks in this area may be a tectonically emplaced slice of the North China Craton(Zhang et al.,2005).All of this means that the age and nature of the SZRM basement,and whether this area records Neoproterozoic magmatism,remain unclear.This study presents new geochronological,whole-rock geochemical,and zircon Hf isotopic data for early Proterozoic granitoids within the eastern margin of the SZRM of NE China.These data provide insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent.The zircon U–Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages:(1)a^917–911 Ma suite of syenogranites and monzogranites,and(2)an^841 Ma suite of granodiorites.The 917–911 Ma granitoids contain high concentrations of Si O2(67.89–71.18 wt.%),K2O(4.24–6.91 wt.%),and Al2O3(14.89–16.14 wt.%),and low concentrations of TFe2O3(1.63–3.70 wt.%)and Mg O(0.53–0.88 wt.%).They are enriched in the light rare earth elements(LREE)and the light ion lithophile elements(LILE),are depleted in the heavy REE(HREE)and the heavy field strength elements(HFSE;e.g.,Nb,Ta,and Ti),and have slightly positive Eu anomalies,indicating they are geochemically similar to high-K adakitic rocks.They have zirconεHf(t)values and TDM2 ages from–4.4 to+1.5and from 1915 Ma to 1592 Ma,respectively,suggesting they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material.In comparison,the 841 Ma granodiorites contain relatively low concentrations of Al2O3(14.50–14.58 wt.%)and K2O(3.27–3.29 wt.%),relatively high concentrations of TFe2O3(3.78–3.81 wt.%)and the HREE,have negative Eu anomalies,and have zirconεHf(t)values and TDM2ages from–4.7 to+1.0 and from 1875 to 1559 Ma,respectively.These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material.The^917–911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting,whereas the^841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic continental rifting.It is proposed that the microcontinental massifs within the SZRM formed during or following the final stage of assembly of Rodinia before rifting away from the Tarim Craton in response to Rodinia breakup.展开更多
A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed...A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.展开更多
The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion o...The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.展开更多
Large charnockite massifs occur in the high-grade Southern Granulite Terrain (SGT) and Eastern Ghats Belt (EGB) crustal provinces of Peninsular India. Available geochronological data indicate that the magmatism is...Large charnockite massifs occur in the high-grade Southern Granulite Terrain (SGT) and Eastern Ghats Belt (EGB) crustal provinces of Peninsular India. Available geochronological data indicate that the magmatism is episodic, associated with distinct orogenic cycles in the different crustal domains. The geochemical data also indicate a change in composition from trondhjemitic at - 3.0-2.9 Ga to domi- nantly tonalitic at - 2.6-2.5 Ga to tonalitic-granodiorite-granitic at - 2.0--1.9 Ga to dominantly tonalitic at 1.7--1.6 Ga to quartz monzonitic or tonalitic at - 1.0-0.9 Ga to granodiorite-granitic at - 0.8-0.7 Ga. The trondhjemitic and tonalitic end members are metaluminous, magnesian and calcic to calc-alkalic, characteristic of magnesian group charnockites. The granodioritic to granitic end members are metalumi- nous to slightly peraluminous, ferroan and calc-alkalic to alkali-calcic, characteristic of ferroan group charnockites. The quartz monzonitic end members are metaluminous to peraluminous, magnesian to ferro- an and calcic to calc-alkalic, neither characteristic of the magnesian group nor of the ferroan group of char- nockites. Based on the occurrence and difference in composition of the charnockite massifs, it is suggested that the charnockite magmatism registers the crustal growth of the Indian plate on its southern (SGT) and eastern (EGB) sides, along active continental margins by accretion of arcs.展开更多
Basic features Bangonghu—Dingqing Suture is the medial and western segment of the Bangonghu—Nujiang Suture which many researchers called as ,and it is often regarded as the Qiangtang Massif boundary line in the nort...Basic features Bangonghu—Dingqing Suture is the medial and western segment of the Bangonghu—Nujiang Suture which many researchers called as ,and it is often regarded as the Qiangtang Massif boundary line in the northern side and the Lasa (Gangdisi) Massif in the souther. The era of the ophiolites spreading along the Bangonghu\|Dingqing suture include every period of the whole Jurassic, and the spreading of the ophiolites has distinct segmentation. From west to east there are Ritu segment,Gaize segment,Dongqiao segment and Dingqing segment.Between the Gaize segment and Dongqiao one ,that is ,between the E89°and E86°40′,no ophiolites are discovered in the surface.Aeromagnetic data shows that the magnetic field of this segment is quite gentle,there are no difference from its adjacent northern and southern sides. When its east adjacent segment extends into this segment, the high areomagnetic anomaly belt corresponding to of the Dongqiao ophiolite disappear abruptly. Apparently,it is impossible for the ophiolites to develop in such a deep crust of the same segment.展开更多
Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic a...Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic analysis of gravity,magnetic field,MT,seismic surveying,etc. Geophysical data, the massif, lied in the tectonic setting and geodynamic setting mingled by the south,north tectonic belts, have the features of massif,basin and tectonic belt three forming an organic whole,multi\|degree coupling in plane and section with division of region in south\|north trend,division of block\|fault in east\|west trend,division of sphere\|layer in vertical direction. (1) Belting in south\|north trend: Qiangtang massif could be divided into four units from north to south, that is north edge doming zone, west part doming area,Qiangtang Basin and south edge doming zone. Qiangtang Basin also can be divided into four tectonic units—north Qiangtang down\|warping region, middle downing zone, south Qiangtang down\|warping and east part slope region. The near east\|west trend tectonic zones are well developed. There is aero\|magnetic anomaly distributed in belting with east\|west trend but also concentrated in section. Gravity anomaly is high in the south\|west part and low in the northeast part. Inter\|crust low resistance layer alternately distributed with high and low belting of sou th\|north trend in plane.展开更多
The present-day observed crustal-scale tectonic style of ultrahigh-pressure metamorphic (UH-PM) and high-pressure metamorphic (HPM ) belts in the Dabie-Sulu region was dominantly formedby extensional processes, postda...The present-day observed crustal-scale tectonic style of ultrahigh-pressure metamorphic (UH-PM) and high-pressure metamorphic (HPM ) belts in the Dabie-Sulu region was dominantly formedby extensional processes, postdating the Triassic collision between the Sino-Korean and Yangtze cratons. The extensional structures overprinting the previous structures related to contraction that produced the thickened continental crust of the UHPM and HPM belts, in particular display the typical features of a Cordilleran-type metamorphic core complex, in which at least four regionalscale, low-angle ductile shear zones that constitute a detachment system, are recognized in the Dabie region. In the Sulu region, the extensionaI structures show in the form of small-scale domes or a regional-scale SE-dipping pseudo-monocline. The geometry and the kinematics of tbe detachment zones are briefly described and their significance for the exhumation of UHPM and HPM rocks is discussed. It is iniliated that the subhorizontal crustal-scale extensional flow in the middle-lower crust, under amphibolite- to greenschist-facies conditions, was an important tectonothermal process at 200- 170 Ma and the exhumation or the UHPM and HPM rocks was achieved at least in part along multi-layered detachment zones. The regional detachment system has been the main factor enabling UHPM and HPM rocks to be brought from middle-lower crustal levels to middle-upper crustal levels.展开更多
Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ances...Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic tointermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean 206Pb/238U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios(>0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the YeongnamMassif in southern Korea.The arcmagmatismalong this systemwas commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positiveεHf(t)values(>+12)of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondriticεHf(t)values(+5 to−2)of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zirconεHf(t)values(>+9)shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.展开更多
Mesozoic ophiolites crop out discontinuously in the Indo-Myanmar Ranges in NE India and Myanmar,and represent the remnants of the Neotethyan oceanic lithosphere(Sengupta et al.,1990;Mitchell,1993).These ophiolites in ...Mesozoic ophiolites crop out discontinuously in the Indo-Myanmar Ranges in NE India and Myanmar,and represent the remnants of the Neotethyan oceanic lithosphere(Sengupta et al.,1990;Mitchell,1993).These ophiolites in the Indo-Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone(YZSZ)in southern Tibet farther northwest(Mitchell,1993;Fareeduddin and Dilek,2015),as indicated by their coeval crystallization ages and geochemical compositions(Yang et al.,2012;Liu et al.,2016).The Kalaymyo ophiolite is located in the central part of the eastern Indo-Myanmar Ranges(Fig.1).composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*The Kalaymyo peridotites consist mainly of harzburgites,which show typical porphyroclastic or coarse-grained equigranular textures.They are composed ofolivine(Fo=89.8–90.5),orthopyroxene(En86-91Wo1-4Fs8-10;Mg#=89.6–91.9),clinopyroxene(En46-49Wo47-50Fs3-5;Mg#=90.9–93.6)and spinel(Mg#=67.1–78.9;Cr#=13.5–31.5),and have relatively homogeneous whole-rock compositions with Mg#s of90.1–90.8 and Si O2(41.5–43.65 wt.%),Al2O3(1.66–2.66wt.%)and Ca O(1.45–2.67 wt.%)contents.TheydisplayLightRareEarthElement(LREE)-depleted chondrite-normalized REE patterns with(La/Yb)CN=0.04–0.21 and(Gd/Yb)CN=0.40–0.84,and show a slight enrichment from Pr to La with(La/Pr)CN in the range of 0.98–2.36.The Kalaymyo peridotites are characterized by Pd-enriched chondrite-normalized PGE patterns with superchondritic(Pd/Ir)CN ratios(1.15–2.36).Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90.These mineralogical and geochemical features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees(5–15%)of partial melting at a mid-ocean-ridge(MOR)environment.The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB-like melts,percolating through these already depleted,residual peridotites.The Kalaymyo and other ophiolites in the Indo-Myanmar Ranges hence represent mid-ocean ridge(MOR)–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.展开更多
文摘The training is now expanding in quantity and variety. Massification--which sank--forces universities to meet the challenge of public diversity and to justify pedagogical research. This article takes into consideration particular way of these new requirements heuristic and praxeological referred to teaching that must take into account the expectation of the learner. This work is in a descriptive and explanatory approach and aims to promote higher teaching practices through the new interactive technology tools to stimulate educational innovation within the university system. The aim of this work is the inclusion of massification to contribute to the development of a model for interactivity and effectiveness of learning. This model was developed from a theoretical approach since the state of the art and an empirical approach for several experiments. The study focused on a database C2i exams "IT and lnternet certification of all learners of the Academy of Montpeilier (n = 4,254) on the online formapro platform". The results have shown that the success rate is highly correlated with the duration of prior self. The integration of these technologies in universities offers interactivity and learning environment for adjusting teaching practices and acquiring new skills.
文摘Four financial models of massification of higher education are discussed in this essay.They are American model,Western European model,Southeast Asian and Latin American model and the transition countrie’s model.The comparison of the four models comes to the conclusion that taking advantage of nongovernmental funding is fundamental to dealing with financial difficulty faced by higher education.As a result,it can be argued that the declining of higher education quality does not necessarily have to do with schooling system.On the contrary,the development of private higher education helps the activation mechanism of competition so as to cultivate talents needed by the society.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41671011,41871019,41877292,41972212)Research Foundation of Chutian Scholars Program of Hubei Province(Grant No.8210403)Shanxi Key Research and Development program:Feng Cheng(Grant No.2021SF2-03).
文摘Plate subduction leads to complex exhumation processes on continents.The Huangling Massif lies at the northern margin of the South China Block.Whether the Huangling Massif was exhumed as a watershed of the middle reaches of the Paleo-Yangtze River during the Mesozoic remains under debate.We examined the exhumation history of the Huangling Massif based on six granite bedrock samples,using apatite fission track(AFT)and apatite and zircon(U-Th)/He(AHe and ZHe)thermochronology.These samples yielded ages of 157–132 Ma(ZHe),119–106 Ma(AFT),and 114–72 Ma(AHe),respectively.Thermal modeling revealed that three phases of rapid cooling occurred during the Late Jurassic–Early Cretaceous,late Early Cretaceous,and Late Cretaceous.These exhumation processes led to the high topographic relief responsible for the emergence of the Huangling Massif.The integrated of our new data with published sedimentological records suggests that the Huangling Massif might have been the watershed of the middle reaches of the Paleo-Yangtze River since the Cretaceous.At that time,the rivers flowed westward into the Sichuan Basin and eastward into the Jianghan Basin.The subduction of the Pacific Plate beneath the Asian continent in the Mesozoic deeply influenced the geomorphic evolution of the South China Block.
文摘The Boya-02 kimberlite was identified at depth by geophysical survey work (a single-probe AM survey in 1997 and a gravity survey in 2006) that De Beers DRC Exploration carried out around anomaly 193/172/0019. This anomaly located approximately 50 km southwest of the town of Mbuji-Mayi in the Kasaï-Oriental Province in the DRC should therefore be the subject of detailed exploration with the aim of better identifying and describing this kimberlite. Thus, through exploratory work and cross-checking of geophysical and geological data, the discovery of this Massif was made by drilling on the aeromagnetic anomaly 193/172/X298. Based on drilling, sampling and laboratory petrographic analysis reports, the Boya-02 kimberlite was classified among highly diluted re-sedimented volcaniclastic kimberlites (KVR), rich in olivine and incidentally in quartz and poor in juvenile substances. This kimberlite represents a deposit of very low economic interest following extremely high dilution. The Boya-02 kimberlite was modeled using ground magnetism data. It is a complex anomaly comprising 2 components with variable amplitude appearing on a subtly magnetized linear detail. The modeled dimensions of two components of this anomaly are 0.32 Ha and 0.2 Ha at depths of 32 m & 14 m for the deposits to the West and the East respectively. Garnet data for the Boya-02 occurrence reports a maximum Pmin value of 49.7 kbar (207 garnets). These data demonstrate the high diamond potential which assumes a conductive cratonic geotherm of 40 mWm<sup>2</sup>.
文摘The lithium potential in the Aïr massif is represented by mineral index of spodumene pegmatites and, lepidolite pegmatites. The mineral deposits of lithium occur in cluster or veins that cut the host rock or are located near the contact between the greenstone belt and granitic massif. The evidence of lithium is in the form of clusters or disseminated and stockwerk. Mineralogical characteristics show similarities between the Air Massif pegmatites and indicate the same homogenous source during the magma-generation process. The pegmatite rocks attracted the attention due to their wide exposure and composition, well appearance, and economically hosting of significant rare earth metals such as Sn and W. The mineralogical and petrographical investigations on the eight pegmatites rocks samples observed have a relative similarity, while a little difference in the shapes attributed to the ratio in the pegmatite rocks of the minerals. The occurrence of the kink band indicates the influence of the tectonic processes which affected the Aïr massif after the emplacement of late magmatic or post-magmatic pegmatites by injection into fractured rocks in the upper part of the crust. The Air Massif pegmatite has higher concentrations Li and of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg of for the economic exploration.
文摘University education is the epitome of education that countries leverage for the delivery of national strategic plans,through the creation of skilled workforce for socio-economic development.Kenyan public universities have experienced massification in the past three decades,a phenomenon resulting from the democratization of education,the advent of knowledge economy,and globalization.The purpose of this study was to investigate whether the consequences of massification caused Juakalization in higher education in Kenya.Juakalization is the dilution and conversion of high quality university education to assume an artisan nature of mass production of low quality and unstandardized educational product.The study used a systematic review of literature and public documents to analyze the consequences of massification in Kenya's higher education.Findings indicate that the consequences of massification of overcapacity and insufficient infrastructure led to mass production of a low quality non-standardized university product.The researcher compares the Kenyan Jua Kali artisan production process to that of higher education,where both work under adverse conditions to produce mass low quality products.This analogy acts as a metaphor to describe the dilution and conversion of higher education to that of artisanship and coins the term Juakalization to describe this process in higher education.
基金supported by the Natural Science Foundation of China(Grant: 1212321013019,1212010070301,40672038 and 40872049)
文摘Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating and geochemical data for the Permian gabbros and diorites in the Hunchun area are presented to constrain the regional tectonic evolution in the study area. Zircons from gabbro and diorite are euhedral-subhedral in shape and display fine-scale oscillatory zoning as well as high Th/U ratios (0.26-1.22), implying their magmatic origin. The dating results indicate that the gabbro and diorite formed in the Early Permian (282-2 Ma) and in the Late Permian (255-3 Ma), respectively. In addition, the captured zircons with the weighted mean age of 279-4 Ma are also found in the diorite, consistent with the formation age of the gabbro within uncertainty. The gabbros belong chemically to low-K tholeiitic series, and are characterized by low rare earth element (REE) abundances, fiat REE pattern, weak positive Eu anomalies (JEu), and depletion in high field strength elements (HFSEs, Nb, Ta, and Ti), similar to the high-aluminum basalts from island arc setting. Initial Hf isotopic ratios of zircons from the gabbro range from +7.63 to +14.6, suggesting that its primary magma could be mainly derived from partial melting of a depleted lithospheric mantle. The diorites belong to middle K calc-alkaline series. Compared with the gabbros, the diorites have higher REE abundance, weak negative Eu anomalies, and more depletion in HFSEs (Nb, Ta, and Ti), similar chemically to the volcanic rocks from an active continental margin setting. Initial Hf isotopic ratios and Hf two-stage model ages of zircons from the diorite range from +11.22 to +14.17 and from 424 to 692 Ma, respectively, suggesting that its primary magma could be mainly derived from partial melting of the Early Paleozoic and/or Neoproterozoic accretted lower crust. Taken together, it is suggested that geochemical variations from the Early Permian gabbros to the Late Permian diorites reveal that the subduction of the Paleo-Asian oceanic plate beneath the Khanka Massif and collision between the arc and continent (Khanka Massif) happened in the late stage of the Late Paleozoic.
基金Financial supports for this study were jointly supported by the National Natural Science Foundation of China (Grant Nos.41421002 and 41602109)most special fund from the State Key Laboratory of Continental Dynamics, Northwest University, Shaanxi Postdoctoral Science Foundation, National Science and Technology Special Grant (No. 2016ZX05006-007)China Geological SurveyGrant (No. DD20189614)
文摘The Helanshan tectonic belt is located to the west of the Ordos Basin, and separates the Alxa(or Yinshan)Massif to the west from the Ordos block to the east. Triassic sedimentation in the Helanshan tectonic belt records important information about tectono-sedimentary process between the Alxa Massif and the Ordos block. Detailed geological mapping and investigation on the lithological package, sedimentary facies and paleocurrent orientation have been conducted on the Middle to Upper Triassic clastic rocks in the Helanshan tectonic belt. The succession is characterized by upward-fining sequence and comprises coarse grained alluvial-fluvial facies in the lower part as well as deltaic-lacustrine facies in the upper part. Based on detailed study and comparisons on the sedimentary sequence along various sections, the Middle to Upper Triassic strata have been revealed that show clear southeastward-deepening sedimentary differentiation and transgression from southwest to northeast, which are consistent with the southeastward flowing paleocurrent. These features indicate a southeastward-dipping paleogeography in the Helanshan tectonic belt, which was original western part of southeastward orientated fluviallacustrine system in the northwestern proto-Ordos Basin. Further to the east, the Triassic succession in the Ordos Basin displays gradually thickening and alluvial-fluvial system flowed from southeast to northwest, showing a huge thick sedimentary wedge in the western basin margin. Together with the Late Permiane Early Triassic closure of the Paleo-Asian Ocean to the north, the Late Triassic extensional structures and diabase dykes in the Helanshan tectonic belt, all the above sedimentary features could be mostly interpreted as records of an extensional basin correlated to post-collisional collapse of the Central Asian Orogenic Belt.
文摘The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.
基金financially supported by China Geological Survey (Grants12120113053900 and DD20160047)
文摘Objective The formation and evolution of Songnen massif has always been a hot topic,and the presence of Precambrian basement on the Songnen massif is still controversial:(1)Lacking of Pre-Paleozoic dating results,the Precambrian basement on Songnen massif does not extend largely according to the isotopic dating results of core from basement,(2)the existence of gneiss from deep drill holes
基金supported by the National Science Foundation of ChinaNSFC grants(Grant Nos.41602056,41372075,41172069)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M590729)the Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(Grant No.CUG160846)
文摘Diverse models have been proposed for the role of the Tarim Craton within the Paleoproterozoic Columbia supercontinent assembly. Here we report a suite of-1.71 Ga Nb-enriched meta-gabbro lenses in the eastern Quanji Massif, within the Tarim Craton in NW China. The meta-gabbroic rocks have Nb contents of 11.5-16.4 ppm with Nb/La ratios varying from 0.84 to 1.02((Nb/La)_N = 0.81-0.98) and Nb/U ratios from 38.0 to 47.2. They show low SiO_2(45.1-48.5 wt.%) and MgO(5.96-6.81 wt.%) and Mg#(Mg# = Mg/(Mg + Fe) = 43.5-47.7), high FeO^t(13.0-15.7 wt.%) and moderate Ti02(1.70-2.51 wt.%).with tholeiitic affinities. These rocks possess low fractionated REE patterns without obvious Eu anomalies(Eu/Eu~* = 0.87-1.02). Their primitive mantle-normalized elements patterns display significant Zr-Hf troughs, positive Nb anomalies, weak negative Ti and P anomalies, and high contents of Rb and Ba,resembling Nb-enriched basalts generated in arc-related tectonic settings. Their arc-like geochemical signatures together with whole rock εNd(t) values of 0.4-2.1 and corresponding old T_(DM)(2.22-2.37 Ga)as well as(^(143)Nd/^(144)Nd)_t and(^(87)Sr/^(86)Sr)t(t = 1712 Ma) values of 0.5104-0.5105 and 0.7030-0.7058,respectively, suggest that their precursor magma originated from mantle wedge peridotite metasomatised by subduction-derived melts. The results from our study reveal subduction along the eastern periphery of the Tarim Craton and marginal outgrowth continuing to ~1.7 Ga within the Columbia supercontinent.
基金financially supported by the National Natural Science Foundation of China (Grants 41330206)National Key Basic Research Program of China (2013CB429803)
文摘The Songnen–Zhangguangcai Range Massif(SZRM)is located in the eastern Central Asian Orogenic Belt and crops out over an extensive part of NE China.The massif was originally thought to contain numerous Precambrian terranes(e.g.,Xingdong,Dongfengshan,Yimianpo and Zhangguangcailing groups).However,more recent zircon U–Pb dating indicates that the majority of these so-called Precambrian sedimentary and igneous rocks actually formed during either the Paleozoic or Mesozoic and contain only minor Precambrian components(Wang et al.,2014).The presence of Neoproterozoic and Paleoproterozoic detrital zircons with magmatic origins from and Paleozoic units of the SZRM indicating that this area occurs Proterozoic magmatism(Wang et al.,2014),whereas no Proterozoic magmastism has been found.Recently,Pei et al.(2007)reported the ca.1800Ma magmastism,as evidenced by the data of exploration drillholes in the southern Songliao basin.However,an alternative view is that the basement within the SZRM is predominantly Phanerozoic,as evidenced by the presence of Paleozoic fossils and comparatively rare geochronological data(Guo and Liu,1985;Wu et al.,2011),meaning that the ca.1800 Ma rocks in this area may be a tectonically emplaced slice of the North China Craton(Zhang et al.,2005).All of this means that the age and nature of the SZRM basement,and whether this area records Neoproterozoic magmatism,remain unclear.This study presents new geochronological,whole-rock geochemical,and zircon Hf isotopic data for early Proterozoic granitoids within the eastern margin of the SZRM of NE China.These data provide insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent.The zircon U–Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages:(1)a^917–911 Ma suite of syenogranites and monzogranites,and(2)an^841 Ma suite of granodiorites.The 917–911 Ma granitoids contain high concentrations of Si O2(67.89–71.18 wt.%),K2O(4.24–6.91 wt.%),and Al2O3(14.89–16.14 wt.%),and low concentrations of TFe2O3(1.63–3.70 wt.%)and Mg O(0.53–0.88 wt.%).They are enriched in the light rare earth elements(LREE)and the light ion lithophile elements(LILE),are depleted in the heavy REE(HREE)and the heavy field strength elements(HFSE;e.g.,Nb,Ta,and Ti),and have slightly positive Eu anomalies,indicating they are geochemically similar to high-K adakitic rocks.They have zirconεHf(t)values and TDM2 ages from–4.4 to+1.5and from 1915 Ma to 1592 Ma,respectively,suggesting they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material.In comparison,the 841 Ma granodiorites contain relatively low concentrations of Al2O3(14.50–14.58 wt.%)and K2O(3.27–3.29 wt.%),relatively high concentrations of TFe2O3(3.78–3.81 wt.%)and the HREE,have negative Eu anomalies,and have zirconεHf(t)values and TDM2ages from–4.7 to+1.0 and from 1875 to 1559 Ma,respectively.These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material.The^917–911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting,whereas the^841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic continental rifting.It is proposed that the microcontinental massifs within the SZRM formed during or following the final stage of assembly of Rodinia before rifting away from the Tarim Craton in response to Rodinia breakup.
基金the Basic Research Foundation of the Institute of Geomechanics,CAGS(grant DZLXJK200707)Natural Science Foundation of China grant 40674058)
文摘A three-dimensional local-scale P-velocity model down to 25 km depth around the main shock epicenter region was constructed using 83821 event-to-receiver seismic rays from 5856 aftershocks recorded by a newly deployed temporary seismic network. Checkerboard tests show that our tomographic model has lateral and vertical resolution of -2 km. The high-resolution P-velocity model revealed interesting structures in the seismogenic layer: (1) The Guanxian-Anxian fault, Yingxiu-Beichuan fault and Wenchuan-Maoxian fault of the Longmen Shan fault zone are well delineated by sharp upper crustal velocity changes; (2) The Pengguan massif has generally higher velocity than its surrounding areas, and may extend down to at least -10 km from the surface; (3) A sharp lateral velocity variation beneath the Wenchuan-Maoxian fault may indicate that the Pengguan massif's western boundary and/or the Wenchuan-Maoxian fault is vertical, and the hypocenter of the Wenchuan earthquake possibly located at the conjunction point of the NW dipping Yingxiu-Beichuan and Guanxian-Anxian faults, and vertical Wenchuan-Maoxian fault; (4) Vicinity along the Yingxiu- Beichuan fault is characterized by very low velocity and low seismicity at shallow depths, possibly due to high content of porosity and fractures; (5) Two blocks of low-velocity anomaly are respectively imaged in the hanging wall and foot wall of the Guanxian-Anxian fault with a -7 km offset with -5 km vertical component.
基金support from the State Key Research"973"Plan of China(No. 2009CB421001)National Natural Science Foundation of China(40872139)+1 种基金the 111 Project(B07011) of the Ministry of Education,State Key Laboratory of Geological Processes and Mineral Resources (GPMR200837)the Fundamental Research Funds for the Central Universities(GPMR2009PY01)
文摘The Ailao Shan-Red River fault zone is the boundary between the Yangtze block to the northeast and the Indochina block to the southwest.It is an important tectonic zone due to its role in the southeastward extrusion of the Indochina block during and subsequent to the Indian-Eurasian collision.Diancang Shan(DCS) high-grade metamorphic complex,located at the northwest extension along the Ailao Shan-Red River(ASRR) shear zone,is a representative metamorphic complex of the ASRR tectonic belt.Structural and microstructural analysis of sheared rocks in the high-grade metamorphic rocks reveals that they are coherent with solid-state high-temperature ductile deformation,which is attributed to left-lateral shearing along the ASRR shear zone.New LA-ICP-MS zircon U-Pb geochronological and microstructural studies of the post-kinematic granitic plutons provide a straightforward time constraint on the termination ductile left-lateral shearing and exhumation of the metamorphic massif in the ASRR shear zone.It is suggested that the left-lateral shearing along the ASRR shear zone ended at ca.21 Ma at relative lower-temperature or decreasing temperature conditions.During or after the emplacement of the young dikes at ca.21 Ma,rapid brittle deformation event occurred,which makes the DCS massif start fast uplift/exhumation and cooling to a shallow crustal level.
文摘Large charnockite massifs occur in the high-grade Southern Granulite Terrain (SGT) and Eastern Ghats Belt (EGB) crustal provinces of Peninsular India. Available geochronological data indicate that the magmatism is episodic, associated with distinct orogenic cycles in the different crustal domains. The geochemical data also indicate a change in composition from trondhjemitic at - 3.0-2.9 Ga to domi- nantly tonalitic at - 2.6-2.5 Ga to tonalitic-granodiorite-granitic at - 2.0--1.9 Ga to dominantly tonalitic at 1.7--1.6 Ga to quartz monzonitic or tonalitic at - 1.0-0.9 Ga to granodiorite-granitic at - 0.8-0.7 Ga. The trondhjemitic and tonalitic end members are metaluminous, magnesian and calcic to calc-alkalic, characteristic of magnesian group charnockites. The granodioritic to granitic end members are metalumi- nous to slightly peraluminous, ferroan and calc-alkalic to alkali-calcic, characteristic of ferroan group charnockites. The quartz monzonitic end members are metaluminous to peraluminous, magnesian to ferro- an and calcic to calc-alkalic, neither characteristic of the magnesian group nor of the ferroan group of char- nockites. Based on the occurrence and difference in composition of the charnockite massifs, it is suggested that the charnockite magmatism registers the crustal growth of the Indian plate on its southern (SGT) and eastern (EGB) sides, along active continental margins by accretion of arcs.
文摘Basic features Bangonghu—Dingqing Suture is the medial and western segment of the Bangonghu—Nujiang Suture which many researchers called as ,and it is often regarded as the Qiangtang Massif boundary line in the northern side and the Lasa (Gangdisi) Massif in the souther. The era of the ophiolites spreading along the Bangonghu\|Dingqing suture include every period of the whole Jurassic, and the spreading of the ophiolites has distinct segmentation. From west to east there are Ritu segment,Gaize segment,Dongqiao segment and Dingqing segment.Between the Gaize segment and Dongqiao one ,that is ,between the E89°and E86°40′,no ophiolites are discovered in the surface.Aeromagnetic data shows that the magnetic field of this segment is quite gentle,there are no difference from its adjacent northern and southern sides. When its east adjacent segment extends into this segment, the high areomagnetic anomaly belt corresponding to of the Dongqiao ophiolite disappear abruptly. Apparently,it is impossible for the ophiolites to develop in such a deep crust of the same segment.
文摘Qiangtang Massif is located in the hinterland of Qinghai—Tibet plateau, which belong to the mid\|east section of Tethys Tectonic Domain.1 Features of the whole texture and structure of Qiangtang massif By synthetic analysis of gravity,magnetic field,MT,seismic surveying,etc. Geophysical data, the massif, lied in the tectonic setting and geodynamic setting mingled by the south,north tectonic belts, have the features of massif,basin and tectonic belt three forming an organic whole,multi\|degree coupling in plane and section with division of region in south\|north trend,division of block\|fault in east\|west trend,division of sphere\|layer in vertical direction. (1) Belting in south\|north trend: Qiangtang massif could be divided into four units from north to south, that is north edge doming zone, west part doming area,Qiangtang Basin and south edge doming zone. Qiangtang Basin also can be divided into four tectonic units—north Qiangtang down\|warping region, middle downing zone, south Qiangtang down\|warping and east part slope region. The near east\|west trend tectonic zones are well developed. There is aero\|magnetic anomaly distributed in belting with east\|west trend but also concentrated in section. Gravity anomaly is high in the south\|west part and low in the northeast part. Inter\|crust low resistance layer alternately distributed with high and low belting of sou th\|north trend in plane.
文摘The present-day observed crustal-scale tectonic style of ultrahigh-pressure metamorphic (UH-PM) and high-pressure metamorphic (HPM ) belts in the Dabie-Sulu region was dominantly formedby extensional processes, postdating the Triassic collision between the Sino-Korean and Yangtze cratons. The extensional structures overprinting the previous structures related to contraction that produced the thickened continental crust of the UHPM and HPM belts, in particular display the typical features of a Cordilleran-type metamorphic core complex, in which at least four regionalscale, low-angle ductile shear zones that constitute a detachment system, are recognized in the Dabie region. In the Sulu region, the extensionaI structures show in the form of small-scale domes or a regional-scale SE-dipping pseudo-monocline. The geometry and the kinematics of tbe detachment zones are briefly described and their significance for the exhumation of UHPM and HPM rocks is discussed. It is iniliated that the subhorizontal crustal-scale extensional flow in the middle-lower crust, under amphibolite- to greenschist-facies conditions, was an important tectonothermal process at 200- 170 Ma and the exhumation or the UHPM and HPM rocks was achieved at least in part along multi-layered detachment zones. The regional detachment system has been the main factor enabling UHPM and HPM rocks to be brought from middle-lower crustal levels to middle-upper crustal levels.
基金jointly supported by a Basic Research Project(20-3111-1:Geological survey in the Korean Peninsula and publication of the geological maps)of the Korea Institute of Geoscience and Mineral Resources,funded by the Ministry of Science and ICT,Korearesearch grants from the Korea Basic Science Institute(C070110,C030120).
文摘Zircon U–Pb and Hf isotope data integrated in this study for magmatic and metamorphic rocks fromthe Hida Belt,southwest Japan,lead to a new understanding of the evolution of the Cordilleran arc system along the ancestral margins of present-day Northeast Asia.Ion microprobe data for magmatic zircon domains from eight mafic tointermediate orthogneisses in the Tateyama and Tsunogawa areas yielded weighted mean 206Pb/238U ages spanning the entire Permian period(302–254 Ma).Under cathodoluminescence,primary magmatic growth zones in the zircon crystals were observed to be partially or completely replaced by inward-penetrating,irregularly curved featureless or weakly zoned secondary domains that mostly yielded U–Pb ages of 250–240 Ma and relatively high Th/U ratios(>0.2).These secondary domains are considered to have been formed by solid-state recrystallization during thermal overprints associated with intrusions of Hida granitoids.Available whole-rock geochemical and Sr–Nd isotope data as well as zircon age spectra corroborate that the Hida Belt comprises the Paleozoic–Mesozoic Cordilleran arc system built upon the margin of the North China Craton,together with the YeongnamMassif in southern Korea.The arcmagmatismalong this systemwas commenced in the Carboniferous and culminated in the Permian–Triassic transition period.Highly positiveεHf(t)values(>+12)of late Carboniferous to early Permian detrital zircons in the Hida paragneisses indicate that there was significant input from the depleted asthenospheric mantle and/or its crustal derivatives in the early stage of arc magmatism.On the other hand,near-chondriticεHf(t)values(+5 to−2)of magmatic zircons from late Permian Hida orthogneisses suggest a lithospheric mantle origin.Hf isotopic differences between magmatic zircon cores and the secondary rims observed in some orthogneiss samples clearly indicate that the zircons were chemically open to fluids or melts during thermal overprints.Resumed highly positive zirconεHf(t)values(>+9)shared by Early Jurassic granitoids in the Hida Belt and Yeongnam Massif may reflect reworking of the Paleozoic arc crust.
文摘Mesozoic ophiolites crop out discontinuously in the Indo-Myanmar Ranges in NE India and Myanmar,and represent the remnants of the Neotethyan oceanic lithosphere(Sengupta et al.,1990;Mitchell,1993).These ophiolites in the Indo-Myanmar Ranges are the southern continuation of the Neotethyan ophiolites occurring along the Yarlung Zangbo Suture Zone(YZSZ)in southern Tibet farther northwest(Mitchell,1993;Fareeduddin and Dilek,2015),as indicated by their coeval crystallization ages and geochemical compositions(Yang et al.,2012;Liu et al.,2016).The Kalaymyo ophiolite is located in the central part of the eastern Indo-Myanmar Ranges(Fig.1).composition of these ophiolites from the central Tibetan Plateau(CTP)is dominated by MORBs and minor OIBs and a distinct lack of IATs and BONs,which is inconsistent with most ophiolites worldwide(Robinson and Zhou,2008;Zhang et al.,2008).But the generation and tectonic nature of these ophiolites are still controversial.*The Kalaymyo peridotites consist mainly of harzburgites,which show typical porphyroclastic or coarse-grained equigranular textures.They are composed ofolivine(Fo=89.8–90.5),orthopyroxene(En86-91Wo1-4Fs8-10;Mg#=89.6–91.9),clinopyroxene(En46-49Wo47-50Fs3-5;Mg#=90.9–93.6)and spinel(Mg#=67.1–78.9;Cr#=13.5–31.5),and have relatively homogeneous whole-rock compositions with Mg#s of90.1–90.8 and Si O2(41.5–43.65 wt.%),Al2O3(1.66–2.66wt.%)and Ca O(1.45–2.67 wt.%)contents.TheydisplayLightRareEarthElement(LREE)-depleted chondrite-normalized REE patterns with(La/Yb)CN=0.04–0.21 and(Gd/Yb)CN=0.40–0.84,and show a slight enrichment from Pr to La with(La/Pr)CN in the range of 0.98–2.36.The Kalaymyo peridotites are characterized by Pd-enriched chondrite-normalized PGE patterns with superchondritic(Pd/Ir)CN ratios(1.15–2.36).Their calculated oxygen fugacities range between QFM–0.57 and QFM+0.90.These mineralogical and geochemical features collectively suggest that the Kalaymyo peridotites represent residual upper mantle rocks after low to moderate degrees(5–15%)of partial melting at a mid-ocean-ridge(MOR)environment.The observed enrichment in LREE and Pd was a result of their reactions with enriched MORB-like melts,percolating through these already depleted,residual peridotites.The Kalaymyo and other ophiolites in the Indo-Myanmar Ranges hence represent mid-ocean ridge(MOR)–type Tethyan oceanic lithosphere derived from a downgoing plate and accreted into a westward migrating subduction–accretion system along the eastern margin of India.