Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations i...Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations in the search grids of MFP, compressed sensing inspires an approach to reduce the database by introducing a sensing matrix to compress the database. Compressed sensing is further used to estimate the source locations with higher resolution by solving the β -norm optimization problem of the compressed Green's function and the data received by a vertieal/horizontal line array. The method is validated by simulation and is verified with the experimental data.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374271 and 11374270the Fundamental Research Funds for the Central Universities under Grant No 201513038
文摘Source localization by matched-field processing (MFP) can be accelerated by building a database of Green's functions which however requires a bulk-storage memory. According to the sparsity of the source locations in the search grids of MFP, compressed sensing inspires an approach to reduce the database by introducing a sensing matrix to compress the database. Compressed sensing is further used to estimate the source locations with higher resolution by solving the β -norm optimization problem of the compressed Green's function and the data received by a vertieal/horizontal line array. The method is validated by simulation and is verified with the experimental data.