Background In this study, we propose view interpolation networks to reproduce changes in the brightness of an object′s surface depending on the viewing direction, which is important for reproducing the material appea...Background In this study, we propose view interpolation networks to reproduce changes in the brightness of an object′s surface depending on the viewing direction, which is important for reproducing the material appearance of a real object. Method We used an original and modified version of U-Net for image transformation. The networks were trained to generate images from the intermediate viewpoints of four cameras placed at the corners of a square. We conducted an experiment using with three different combinations of methods and training data formats. Result We determined that inputting the coordinates of the viewpoints together with the four camera images and using images from random viewpoints as the training data produces the best results.展开更多
文摘Background In this study, we propose view interpolation networks to reproduce changes in the brightness of an object′s surface depending on the viewing direction, which is important for reproducing the material appearance of a real object. Method We used an original and modified version of U-Net for image transformation. The networks were trained to generate images from the intermediate viewpoints of four cameras placed at the corners of a square. We conducted an experiment using with three different combinations of methods and training data formats. Result We determined that inputting the coordinates of the viewpoints together with the four camera images and using images from random viewpoints as the training data produces the best results.