In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the p...Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.展开更多
A wireless search system was integrated on Windows 2000 server.Based on the communication principle between wireless data and Internet,the object expression of search file,the automatic query of document information,t...A wireless search system was integrated on Windows 2000 server.Based on the communication principle between wireless data and Internet,the object expression of search file,the automatic query of document information,the segment browsing of result information,and the receiving and sending of user information were realized by using Active Server Page 3.0,VB Script,WML Script insert languages and object orient database technology.The requirement querying information of material processing through Internet by GPRS,WAP mobile handset and so on was accomplished.展开更多
Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable proc...Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.展开更多
We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The bea...We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The beam quality factors M2 in the unstable and stable directions are 1.35 and 1.31, respectively. 15 μJ picosecond pulses at the central wavelength of 355 nm are generated through third harmonic generation(THG) by using two Li B3 O5(LBO) crystals, in order to get better processing efficiency on polycrystalline diamonds. The high pulse energy and beam quality of these ultraviolet(UV) picosecond pulses are confirmed by latter experiments of material processing on polycrystalline diamonds. This scheme which combines the advantages of the all PM fiber mode-locked laser and the solid-slab amplifier enables compact, robust and chirped pulse amplification-free amplification with high power picosecond pulses.展开更多
The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machin...The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG)was investigated and discussed by the finite element method.The multiphysics coupling model including flow field model,Joule heating model,material dissolution model and vibration model was built.3D multiphysics simulation based on micro dimples process in RUR-EMM and R-EMM was proposed.Simulation results showed that the electrolyte flowed into and out IEG periodically,gas bubbles were easy to squeeze out and the gas void fraction deceased about 16%to 54%,the maximum current density increased by 1.36 times in RUR-EMM than in R-EMM in one vibration period of time.And application of the ultrasonic vibration increased the electrolyte temperature about 1.3–4.4%in IEG.Verification experiments of the micro dimple process denoted better corrosion consistency of array dimples in RUR-EMM,there was no island at the micro dimple bottom which always formed in R-EMM,and an aggregated deviation of less than 8.7%for the micro dimple depth and 4%for the material removal amount between theory and experiment was obtained.展开更多
The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfull...The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.展开更多
In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modificatio...In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions.However,when high pulse energies or low numerical apertures are required,nonlinear side effects such as self-focusing,filamentation or white light generation can decrease the modification quality.In this paper,we apply simultaneous spatial and temporal focusing(SSTF)to overcome these limitations.The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane,thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects.Thus,we investigate the optical breakdown within a water cell by pump-probe shadowgraphy,comparing conventional focusing and SSTF under equivalent focusing conditions.The plasma formation is well confined for low pulse energies,2 mJ,but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing,thereby decreasing the modification quality.In contrast,plasma induced by SSTF stays well confined to the focal plane,even for high pulse energies up to 8 mJ,preventing extended filaments,side branches or break-up of the disruptions.Furthermore,while conventional focusing leads to broadband supercontinuum generation,only marginal spectral broadening is observed using SSTF.These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes.Therefore,SSTF appears to be a powerful tool to control the processing of transparent materials,e.g.,for precise ophthalmic fs-surgery.展开更多
The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last year...The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ...The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ofMetals(KIM)and The Mineral,Metals & Materi-als Society of the United States(TMS),was held inShangri-La Hotel,Hangzhou,China on June24-27,1992.It was the first large international conference展开更多
Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted expl...Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one展开更多
A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on e...A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on experiment models, which is based on informationmodels. Some key technologies applied to mate- rials processingprocedure such as artificial neural networks, fuzzy sets, geneticalgorithms and visualization techn- ology are also presented, and afusing methodology of these new technologies is studied. Applicationin the cement grinding process of Horomill shows that results in thispaper are efficient.展开更多
The Joint Conference Organizing Committee of The Chinese Society of Metals(CSM),The Japan Insti-tute of Metals(JIM),The Korean Institute of Metals(KIM)and The Minerals,Metals & Materials Society(TMS)announces The ...The Joint Conference Organizing Committee of The Chinese Society of Metals(CSM),The Japan Insti-tute of Metals(JIM),The Korean Institute of Metals(KIM)and The Minerals,Metals & Materials Society(TMS)announces The First Pacific Rim International Conference on Advanced Materials and Processing(PRICM-1)which will be held in Hangzhou,China,in the last week of June,1992 lasting about four days.It is agreed that the PRICM-1 will be organized by The Chinese Society of Metals.展开更多
A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Mat...A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Materials Research Group, which was found in the early eighties of last century. The Center is focusing in the basic and applied research, and development of advanced metallic materials and their processing technology. It also functions as an organization展开更多
It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analy...It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analyzed. The aim of this research is using of microwave energy to disinfect grains of harvest and giving new properties to the grains and plants materials. The author has presented researches of the grains disinfection, during seedbed preparation and post processing. Rational parameters of heating rates of different biological objects were identified, revealed their dependence and impact on infection pathogens, through using of microwave energy technology. The author found a reduction of the number of pathogenic microbes and organisms at the various stages of processing agricultural products during using of microwave energy, and found new qualitative indicators of the products properties.展开更多
Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting ...Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material. Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.展开更多
The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM includin...The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.展开更多
Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool...Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.展开更多
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
文摘Continuous material processing operations like printing and textiles manufacturing are conducted under highly variable conditions due to changes in the environment and/or in the materials being processed.As such,the processing parameters require robust real-time adjustment appropriate to the conditions of a nonlinear system.This paper addresses this issue by presenting a hybrid feedforward-feedback nonlinear model predictive controller for continuous material processing operations.The adaptive feedback control strategy of the controller augments the standard feedforward control to ensure improved robustness and compensation for environmental disturbances and/or parameter uncertainties.Thus,the controller can reduce the need for manual adjustments.The controller applies nonlinear generalized predictive control to generate an adaptive control signal for attaining robust performance.A wavelet-based neural network model is adopted as the prediction model with high prediction precision and time-frequency localization characteristics.Online training is utilized to predict uncertain system dynamics by tuning the wavelet neural network parameters and the controller parameters adaptively.The performance of the controller algorithm is verified by both simulation,and in a real-time practical application involving a single-input single-output double-zone sliver drafting system used in textiles manufacturing.Both the simulation and practical results demonstrate an excellent control performance in terms of the mean thickness and coefficient of variation of output slivers,which verifies the effectiveness of this approach in improving the long-term uniformity of slivers.
基金Item Sponsored by Doctoral Program of Higher Education of China(97014515)
文摘A wireless search system was integrated on Windows 2000 server.Based on the communication principle between wireless data and Internet,the object expression of search file,the automatic query of document information,the segment browsing of result information,and the receiving and sending of user information were realized by using Active Server Page 3.0,VB Script,WML Script insert languages and object orient database technology.The requirement querying information of material processing through Internet by GPRS,WAP mobile handset and so on was accomplished.
基金supported by the National Natural Science Foundation of China(No.52075289)the Tsinghua-Jiangyin Innovation Special Fund(TJISF,No.2023JYTH0104).
文摘Ultrafast laser processing technology has offered a wide range of opportunities in micro/nano fabrication and other fields such as nanotechnology,biotechnology,energy science,and photonics due to its controllable processing precision,diverse processing capabilities,and broad material adaptability.The processing abilities and applications of the ultrafast laser still need more exploration.In the field of material processing,controlling the atomic scale structure in nanomaterials is challenging.Complex effects exist in ultrafast laser surface/interface processing,making it difficult to modulate the nanostructure and properties of the surface/interface as required.In the ultrafast laser fabrication of micro functional devices,the processing ability needs to be improved.Here,we review the research progress of ultrafast laser micro/nano fabrication in the areas of material processing,surface/interface controlling,and micro functional devices fabrication.Several useful ultrafast laser processing methods and applications in these areas are introduced.With various processing effects and abilities,the ultrafast laser processing technology has demonstrated application values in multiple fields from science to industry.
基金supported by the National Natural Science Foundation of China(Nos.61535009,11527808,61605142,and 61735007)the Tianjin Research Program of Application Foundation and Advanced Technology(No.17JCJQJC43500)
文摘We demonstrate an all polarization-maintaining(PM) fiber mode-locked laser seeded, hybrid fiber/solid-slab picosecond pulse laser system which outputs 40 μJ, 10 ps pulses at the central wavelength of 1064 nm. The beam quality factors M2 in the unstable and stable directions are 1.35 and 1.31, respectively. 15 μJ picosecond pulses at the central wavelength of 355 nm are generated through third harmonic generation(THG) by using two Li B3 O5(LBO) crystals, in order to get better processing efficiency on polycrystalline diamonds. The high pulse energy and beam quality of these ultraviolet(UV) picosecond pulses are confirmed by latter experiments of material processing on polycrystalline diamonds. This scheme which combines the advantages of the all PM fiber mode-locked laser and the solid-slab amplifier enables compact, robust and chirped pulse amplification-free amplification with high power picosecond pulses.
基金financial support of the projects from the National Natural Science Foundation of China(Nos.51975532 and 51475428)the Zhejiang Provincial Natural Science Foundation(No.LY19E050007)。
文摘The radial ultrasonic rolling electrochemical micromachining(RUR-EMM)combined rolling electrochemical micromachining(R-EMM)and ultrasonic vibration was studied in this paper.The fundamental understanding of the machining process especially the interaction between multiphysics in the interelectrode gap(IEG)was investigated and discussed by the finite element method.The multiphysics coupling model including flow field model,Joule heating model,material dissolution model and vibration model was built.3D multiphysics simulation based on micro dimples process in RUR-EMM and R-EMM was proposed.Simulation results showed that the electrolyte flowed into and out IEG periodically,gas bubbles were easy to squeeze out and the gas void fraction deceased about 16%to 54%,the maximum current density increased by 1.36 times in RUR-EMM than in R-EMM in one vibration period of time.And application of the ultrasonic vibration increased the electrolyte temperature about 1.3–4.4%in IEG.Verification experiments of the micro dimple process denoted better corrosion consistency of array dimples in RUR-EMM,there was no island at the micro dimple bottom which always formed in R-EMM,and an aggregated deviation of less than 8.7%for the micro dimple depth and 4%for the material removal amount between theory and experiment was obtained.
文摘The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.
基金This study was supported by the Thuringian Ministry of Education,Science and Culture(OptiMi 2020-Graduate Research School‘Green Photonics’,B514-10061)the German Research Foundation(Leibniz program)the Carl Zeiss Foundation.
文摘In recent years,femtosecond(fs)-lasers have evolved into a versatile tool for high precision micromachining of transparent materials because nonlinear absorption in the focus can result in refractive index modifications or material disruptions.However,when high pulse energies or low numerical apertures are required,nonlinear side effects such as self-focusing,filamentation or white light generation can decrease the modification quality.In this paper,we apply simultaneous spatial and temporal focusing(SSTF)to overcome these limitations.The main advantage of SSTF is that the ultrashort pulse is only formed at the focal plane,thereby confining the intensity distribution strongly to the focal volume and suppressing detrimental nonlinear side effects.Thus,we investigate the optical breakdown within a water cell by pump-probe shadowgraphy,comparing conventional focusing and SSTF under equivalent focusing conditions.The plasma formation is well confined for low pulse energies,2 mJ,but higher pulse energies lead to the filamentation and break-up of the disruptions for conventional focusing,thereby decreasing the modification quality.In contrast,plasma induced by SSTF stays well confined to the focal plane,even for high pulse energies up to 8 mJ,preventing extended filaments,side branches or break-up of the disruptions.Furthermore,while conventional focusing leads to broadband supercontinuum generation,only marginal spectral broadening is observed using SSTF.These experimental findings are in excellent agreement with numerical simulations of the nonlinear pulse propagation and interaction processes.Therefore,SSTF appears to be a powerful tool to control the processing of transparent materials,e.g.,for precise ophthalmic fs-surgery.
文摘The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
文摘The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ofMetals(KIM)and The Mineral,Metals & Materi-als Society of the United States(TMS),was held inShangri-La Hotel,Hangzhou,China on June24-27,1992.It was the first large international conference
文摘Ti1Al2O3 Functionally Gradient Material (FGM) was prepared by an explosive compaction/SHS process. Ten sheets of the compounding powder were laminated and pressed to get a green body of FGM. It was then compacted explosively By burying the explosive compaction body into a stoichiometric Al/TiO2 mixture and igniting the combustion of the stoichiometric Al/TiO2 mixture, the SHS reaction of the explosive compaction body was initiated by the heat released from the combustion of the stoichiometric Al/TiO2 mixture. In this way, Ti/Al2O3 FGM was synthesized. The adiabatic temperatures of each gradient layer were calculated when the preheating temperatures were 298 K and 1173 K, respectively The microstructure, composition and properties of Ti/Al2O3 FGM and the reaction mechanism of each gradient layer were studied. It was found that Ti/Al2O3 FGM prepared by the explosive compaction/SHS process had a high density and a high microhardness. Its structure, composition and properties showed apparent gradient distribution. The structure of the standard stoichiometric ratio gradient layer of FGM was a network structure. Its reaction mode could be described as follows: Al powder melted first, then the molten Al penetrated into the TiO2 zone and reacted with TiO2, and big pores were left in the original positions of Al powder. The reaction of gradient layers with the addition of Al3O3 as diluents was similar to that of the standard stoichiometric ratio gradient layer, so were their structure and composition. However, the reaction of gradient layers with the addition of Ti as diluents was more complex and the composition deviated slightly from the designed one
文摘A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on experiment models, which is based on informationmodels. Some key technologies applied to mate- rials processingprocedure such as artificial neural networks, fuzzy sets, geneticalgorithms and visualization techn- ology are also presented, and afusing methodology of these new technologies is studied. Applicationin the cement grinding process of Horomill shows that results in thispaper are efficient.
文摘The Joint Conference Organizing Committee of The Chinese Society of Metals(CSM),The Japan Insti-tute of Metals(JIM),The Korean Institute of Metals(KIM)and The Minerals,Metals & Materials Society(TMS)announces The First Pacific Rim International Conference on Advanced Materials and Processing(PRICM-1)which will be held in Hangzhou,China,in the last week of June,1992 lasting about four days.It is agreed that the PRICM-1 will be organized by The Chinese Society of Metals.
文摘A dvanced Metallic Materials Research and Processing Technology Center was found in December 1998. As a unit under The College of Mechanical Engineering, the Center is an expansion of the former Cast and Composite Materials Research Group, which was found in the early eighties of last century. The Center is focusing in the basic and applied research, and development of advanced metallic materials and their processing technology. It also functions as an organization
文摘It is observed contamination and subsequent growth of various types of mycotoxins in the production and processing of grain and non-grain crops. The contamination of grain and non-grain cereals crops harvest was analyzed. The aim of this research is using of microwave energy to disinfect grains of harvest and giving new properties to the grains and plants materials. The author has presented researches of the grains disinfection, during seedbed preparation and post processing. Rational parameters of heating rates of different biological objects were identified, revealed their dependence and impact on infection pathogens, through using of microwave energy technology. The author found a reduction of the number of pathogenic microbes and organisms at the various stages of processing agricultural products during using of microwave energy, and found new qualitative indicators of the products properties.
文摘Full factorial design of experiments was developed in order to investigate the effects of jet pressure, abrasive mixing rate, cutting feed, and plate thickness upon three response variables, surface finish of cutting wear zone, percentage proportion of striation free area, and maximum width of cut. The set of sixteen experiments was performed on each of the following two ductile materials: AISI 4340 (high strength low alloy steel, hardened to 49HRc) and Aluminum 2219. Analysis of Variance (ANOVA) was performed on experimental data in order to determine the significance of effects of different parameters on the performance measures. It was found that cutting feed and thickness were highly influential parameters, while abrasive mixing rate is influential upon surface roughness only. Strong interaction was found between jet pressure and workpiece material. Multi-criteria numerical optimization was performed in order to simultaneously maximize/minimize different combinations of performance measures.
基金supported by the National High Technical Reasearch and Development Programme of China(No.2002AA336100)
文摘The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.
基金financial support from the National Key Research and Development Program of China (2019YFB2005401)National Natural Science Foundation of China (Nos. 91860207 and 52175420)+5 种基金Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project)(No. 2020CXGC010204)Shandong Provincial Natural Science Foundation of China (2021JMRH0301 and2021JMRH0304)Taishan Scholar FoundationInternational Partnership Scheme of the Bureau of the International Scientific Cooperation of the Chinese Academy of Sciences(No. 181722KYSB20180015)Research and Innovation Office of The Hong Kong Polytechnic University (BBX5and BBX7)funding support to the State Key Laboratories in Hong Kong
文摘Material removal in the cutting process is regarded as a friction system with multiple input and output variables.The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces.The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality.This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives.First,the cutting friction phenomena under extreme conditions,such as high temperature,large strain/strain rates,sticking–sliding contact states,and diverse cutting conditions are analyzed.Second,the theoretical models of cutting friction behaviors and the application of simulation technology are discussed.Third,the factors that affect friction behaviors are analyzed,including material matching,cutting parameters,lubrication/cooling conditions,micro/nano surface textures,and tool coatings.Then,the consequences of the cutting friction phenomena,including tool wear patterns,tool life,chip formation,and the machined surface are analyzed.Finally,the research limitations and future work for cutting friction behaviors are discussed.This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.