期刊文献+
共找到499篇文章
< 1 2 25 >
每页显示 20 50 100
Study on Material Composition and REE-host Forms of Ion-type RE Deposits in South China 被引量:5
1
作者 张培善 陶克捷 杨主明 《Journal of Rare Earths》 SCIE EI CAS CSCD 1995年第1期37-41,共5页
in the ion-type RE deposite in South China, the host rocks of REE minerals are igneous and metamorphic rocks , such as granite, granite-porphyry, granitite, muscovite granite, granodiorite, rhyolite, tuff, lamprophyre... in the ion-type RE deposite in South China, the host rocks of REE minerals are igneous and metamorphic rocks , such as granite, granite-porphyry, granitite, muscovite granite, granodiorite, rhyolite, tuff, lamprophyre, alkaline rocks, granite-gneiss, stuff, gneissic granite.These various types of rocks occurred in the environment of humid subtropical zone with a specific topographic relief. During a long-term geological process, they were weathered and alterated into montmorillonite, gibbstite, vermiculite and the dioctahedral type of clay minerals, such as kaolinite, halloysite-0. 7 nm , halloysite-1. 0 nm and ferrohalloysite. All of these clay minerals are the REE carriers. The REE in the ion-type RE deposits came from there source: 1) the REE -bearing rock-forming minerals in host rock, such as microcline and amphibole:2) the accessory minerals in host rocks, such as allanite, gadolinite-(Y), sphene , parisite-(Y), and fergusonite-(Y). For a long geological time the weathering and leaching processes caused the minerals to be disintegrated and to free REE ions. The REE cations can be adsorbed on various clay minerals associated. The categories of ion -type RE deposite depend on the species of RE minerals and the lithological characters of the host geological body in the ore deposit area. 展开更多
关键词 Ion -type RE deposit material composition RE-host forms Clay minerals Adsorption
下载PDF
Effects of synthesis temperature and raw materials composition on preparation of β-Sialon based composites from fly ash 被引量:9
2
作者 MA Bei-yue LI Ying +1 位作者 YAN Chen DING Yu-shi 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期129-133,共5页
β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition... β-Sialon based composites were successfully prepared from fly ash and carbon black under nitrogen atmosphere by carbothermal reduction-nitridation process. Effects of heating temperature and raw materials composition on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by X-ray diffraction and scanning electronic microscopy. The results show that increasing heating temperature or mass ratio of carbon black to fly ash can promote the formation of β-Sialon. The β-Sialon based composites can be synthesized at 1723 K for 6 h while heating the sample with mass ratio of carbon black to fly ash of 0.56. The as-received β-Sialon in the composites exists as granular with an average particle size of 2-3 μm. The preparation process of β-Sialon based composites includes the formation of O′-Sialon, X-Sialon and β-Sialon as well as the conversion processes of O′-Sialon and X-Sialon to β-Sialon. 展开更多
关键词 SIALON COMPOSITES carbothermal reduction-nitridation process fly ash synthesis temperature raw materials composition
下载PDF
Thermoelectric properties of p-type Bi-Sb-Te compositionally graded thermoelectric materials with different barriers
3
作者 GuyingXu ChangchunGe 《Journal of University of Science and Technology Beijing》 CSCD 2002年第5期386-388,共3页
In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (Bi1-xSbx) 2Te3 (x = 0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with differ... In order to find more suitable materials as barriers and to improve the thermoelectric properties, p-type (Bi1-xSbx) 2Te3 (x = 0.85, 0.9) two segments compositionally graded thermoelectric materials (CGTM) with different barriers were fabricated by conventional hot pressure method. Metals Fe, Co, Cu and Al were used as barriers between two segments. The effects of different barriers on thermoelectric properties of CGTM were investigated. The results show that metal Fe is more stable and suitable as the barrier. 展开更多
关键词 compositionally graded thermoelectric materials BARRIER thermoelectric property
下载PDF
Gypsum-based Silica Gel Humidity-controlling Composite Materials:Preparation,Characterization,and Performance
4
作者 李曦 冉茂宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期337-344,共8页
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos... Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions. 展开更多
关键词 humidity controlling composite materials GYPSUM silica gel
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
5
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
A review of classical hydrogen isotopes storage materials
6
作者 Yang Liu Zhiyi Yang +6 位作者 Panpan Zhou Xuezhang Xiao Jiacheng Qi Jiapeng Bi Xu Huang Huaqin Kou Lixin Chen 《Materials Reports(Energy)》 EI 2024年第1期23-42,共20页
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv... Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research. 展开更多
关键词 Hydrogen isotopes storage alloys ALLOYING Microstructural modification Surface modification Composite materials
下载PDF
Research Progress of Carbon-Silicone Composite Materials
7
作者 Beibei Liu Rongjie Kan 《Expert Review of Chinese Chemical》 2024年第2期1-7,共7页
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan... Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed. 展开更多
关键词 carbon materials GRAPHEME SILICONE composite materials
下载PDF
Physical and Thermo-Mechanical Properties of Composite Materials Based on Raw Earth and Crushed Palm Leaf Fibers (Borassus aethiopum)
8
作者 Mouhamadou Nabi Kane Mapathe Ndiaye +1 位作者 Pape Moussa Touré Adama Dione 《Materials Sciences and Applications》 2024年第9期358-377,共20页
The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples... The objective of this study is to seek solutions to reduce the impact of buildings on climate change and to promote the use of local bio-sourced or geo-sourced materials for sustainable construction. Different samples of raw earth from 3 sites were taken in the commune of Mlomp. Geotechnical tests showed that the raw earth samples from sites 2 and 3 have more clay fraction while site 1 contains more sand. The fact of integrating fibers from crushed palm leaves (Borassus aethiopum) (2%, 4% and 6%) into the 3 raw earth samples reduced the mechanical resistance to compression and traction of the 3 raw earths. The experimental results of thermal tests on samples of earth mixtures with crushed Palma leaf fibers show a decrease in thermal conductivity as well as thermal effusivity as the percentages increase (2%, 4% and 6%) of fibers in raw earth for the 3 sites. This shows that this renewable composite material can help improve the thermal insulation of building envelopes. 展开更多
关键词 Raw Earth Palma Leaf Fibers Ecological Composite materials PHYSICAL Thermo-Mechanical Thermal Conductivity Thermal Effusivity
下载PDF
Research on Silicon Carbide Dispersion-Reinforced Hypereutectic Aluminum-Silicon Electronic Packaging Materials
9
作者 Ruixi Guo Yunhao Hua Tianze Jia 《Journal of Electronic Research and Application》 2024年第2期86-94,共9页
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect... The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties. 展开更多
关键词 Silicon carbide Electronic packaging materials Powder metallurgy Mechanical properties Composite materials
下载PDF
Exploration on the Optimization Strategy for the Layup of Composite Material Pressure Vessels Based on Advanced Algorithms
10
作者 Qingshan Zeng Zuxin Chen 《Open Journal of Applied Sciences》 2024年第9期2482-2505,共24页
This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T80... This study aims to explore the influence of the laying angle on the pressure shell structure made of composite materials under the condition of a fixed shape. By using a composite material composed of a mixture of T800 carbon fiber and AG80 epoxy resin to design pressure vessels, this material combination can significantly improve the interlaminar shear strength and heat resistance. The article elaborates on the basic concepts and failure criteria of composite materials, such as the maximum stress criterion, the maximum strain criterion, the Tsai-Hill criterion, etc. With the help of the APDL parametric modeling language, the arc-shaped, parabolic, elliptical, and fitting curve-shaped pressure vessel models are accurately constructed, and the material property settings and mesh division are completed. Subsequently, APDL is used for static analysis, and the genetic algorithm toolbox built into Matlab is combined to carry out optimization calculations to determine the optimal laying angle. The research results show that the equivalent stress corresponding to the optimal laying angle of the arc-shaped pressure vessel is 5.3685e+08 Pa, the elliptical one is 5.1969e+08 Pa, the parabolic one is 5.8692e+08 Pa, and the fitting curve-shaped one is 5.36862e+08 Pa. Among them, the stress distribution of the fitting curve-shaped pressure vessel is relatively more uniform, with a deformation of 0.568E−03 m, a minimum equivalent stress value of 0.261E+09 Pa, a maximum equivalent stress value of 0.537E+09 Pa, and a ratio of 0.48, which conforms to the equivalent stress criterion. In addition, the fitting curve of this model can adapt to various models and has higher practical value. However, the stress distribution of the elliptical and parabolic pressure vessels is uneven, and their applicability is poor. In the future, further exploration can be conducted on the application of the fitting curve model in composite materials to optimize the design of pressure vessels. This study provides important theoretical support and practical guidance for the design of composite material pressure vessels. 展开更多
关键词 Composite material Pressure Vessel Matlab APDL Parametric Modeling Static Analysis Optimal Laying Angle
下载PDF
Recent progress and challenges in silicon-based anode materials for lithium-ion batteries
11
作者 Gazi Farhan Ishraque Toki M.Khalid Hossain +3 位作者 Waheed Ur Rehman Rana Zafar Abbas Manj Li Wang Jianping Yang 《Industrial Chemistry & Materials》 2024年第2期226-269,共44页
Anode materials for Li-ion batteries(LIBs)utilized in electric vehicles,portable electronics,and other devices are mainly graphite(Gr)and its derivatives.However,the limited energy density of Gr-based anodes promotes ... Anode materials for Li-ion batteries(LIBs)utilized in electric vehicles,portable electronics,and other devices are mainly graphite(Gr)and its derivatives.However,the limited energy density of Gr-based anodes promotes the exploration of alternative anode materials such as silicon(Si)-based materials because of their abundance in nature and low cost.Specifically,Si can store 10 times more energy than Gr and also has the potential to enhance the energy density of LIBs.Despite the many advantages of Si-based anodes,such as high theoretical capacity and low price,their widespread use is hindered by two major issues:charge-induced volume expansion and unreliable solid electrolyte interphase(SEI)propagation.In this detailed review,we highlight the key issues,current advances,and prospects in the rational design of Si-based electrodes for practical applications.We first explain the fundamental electrochemistry of Si and the importance of Si-based anodes in LIBs.The excessive volume increase,relatively low charge efficiency,and inadequate areal capacity of Si-based anodes are discussed to identify the barriers in enhancing their performance in LIBs.Subsequently,the use of binders(e.g.,linear polymer binders,branched polymer binders,cross-linked polymer binders,and conjugated conductive polymer binders),material-based anode composites(such as carbon and its derivatives,metal oxides,and MXenes),and liquid electrolyte construction techniques are highlighted to overcome the identified barriers.Further,tailoring Si-based materials and reshaping their surfaces and interfaces,including improving binders and electrolytes,are shown to be viable approaches to address their drawbacks,such as volume expansion,low charge efficiency,and poor areal capacity.Finally,we highlight that research and development on Si-based anodes are indispensable for their use in commercial applications. 展开更多
关键词 Lithium-ion battery Silicon-based anode Volume expansion Solid electrolyte interphase propagation Binders Composite anode materials
下载PDF
Preparation of inorganic molten salt composite phase change materials and study on their electrothermal conversion properties
12
作者 Jiandong Zuo Hongjie Luo +3 位作者 Ziye Ling Zhengguo Zhang Xiaoming Fang Weiwei Zhang 《Industrial Chemistry & Materials》 2024年第4期571-586,共16页
Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in ... Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs. 展开更多
关键词 Thermal energy storage materials Inorganic molten salts Composite phase transition materials Electrothermal conversion Physical property regulation
下载PDF
Wear behavior of SiC/PyC composite materials prepared by electromagnetic-field-assisted CVI 被引量:1
13
作者 涂川俊 黄启忠 +3 位作者 熊贤至 谢志勇 蔡利辉 陈珊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期856-862,共7页
Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt... Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC. 展开更多
关键词 SiC/PyC composite materials wear performance SELF-LUBRICATING chemical vapor infiltration interfacial adsorption
下载PDF
Electrochemical performance of LiFePO_(4)-Li_(3)V_(2)(PO_4)_3 composite material prepared by solid-hydrothermal method 被引量:1
14
作者 郭孝东 钟本和 +3 位作者 刘恒 宋杨 文嘉杰 唐艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1761-1766,共6页
LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantl... LiFePO4-Li3V2(PO4)3 composites were synthesized by solid-hydrothermal method and by ball milling,respectively.The electrochemical performance of the solid-hydrothermally obtained materials(C-LFVP) was significantly improved compared with LiFePO4(LFP) and Li3V2(PO4)3(LVP),and it was also much better than that of the ball-milled LiFePO4-Li3V2(PO4)3(P-LFVP).C-LFVP and P-LFVP both had four REDOX peaks(voltage plateaus),which coincided with that of LFP and LVP.Some new trace substances were found in C-LFVP which had more perfect morphology,this was responsible for the better electrochemical performance of C-LFVP than P-LFVP. 展开更多
关键词 LIFEPO4 Li3V2(PO4)3 composite materials solid-hydrothermal
下载PDF
Effects of current density on preparation and performance of Al/conductive coating/α-PbO_2-Ce O_2-TiO_2/β-Pb O_2-MnO_2-WC-ZrO_2 composite electrode materials 被引量:1
15
作者 杨海涛 陈步明 +5 位作者 郭忠诚 刘焕荣 张永春 黄惠 徐瑞东 付仁春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3394-3404,共11页
Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique... Al/conductive coating/α-Pb O2-Ce O2-Ti O2/β-PbO 2-MnO 2-WC-Zr O2 composite electrode material was prepared on Al/conductive coating/α-PbO 2-Ce O2-Ti O2 substrate by electrochemical oxidation co-deposition technique. The effects of current density on the chemical composition, electrocatalytic activity, and stability of the composite anode material were investigated by energy dispersive X-ray spectroscopy(EDXS), anode polarization curves, quasi-stationary polarization(Tafel) curves, electrochemical impedance spectroscopy(EIS), scanning electron microscopy(SEM), and X-ray diffraction(XRD). Results reveal that the composite electrode obtained at 1 A/dm2 possesses the lowest overpotential(0.610 V at 500 A/m2) for oxygen evolution, the best electrocatalytic activity, the longest service life(360 h at 40 °C in 150 g/L H2SO4 solution under 2 A/cm2), and the lowest cell voltage(2.75 V at 500 A/m2). Furthermore, with increasing current density, the coating exhibits grain growth and the decrease of content of Mn O2. Only a slight effect on crystalline structure is observed. 展开更多
关键词 composite electrode material A1 substrate β-PbO2-MnO2-WC-ZrO2 electrochemical co-deposition current density
下载PDF
STUDY OF THE PERFORMANCE ON THE WEAR AND FRICTION OF THE C/Cu COMPOSITE MATERIAL 被引量:1
16
作者 车建明 杜玉明 卜炎 《Transactions of Tianjin University》 EI CAS 1997年第1期86-89,共4页
The friction and wear properties of the C/Cu composite material were investigated. The experiments were conducted on a block on ring type friction machine. It has been found that the friction coefficient and the wea... The friction and wear properties of the C/Cu composite material were investigated. The experiments were conducted on a block on ring type friction machine. It has been found that the friction coefficient and the wear rate of the composite material increase slowly as the pressure is increased in a mild wear state. Scanning electron microscopy and electron probe X ray micro analyzer observations indicate that the low values of μ and W L are due to the formation of a film that impedes adhesion and confers some degree of self lubrication. 展开更多
关键词 wear rate FRICTION composite material
下载PDF
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
17
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
Mechanical properties of anti-seepage grouting materials for heavy metal contaminated soil 被引量:3
18
作者 杨宇友 王建强 豆海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3316-3323,共8页
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ... Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added. 展开更多
关键词 heavy metal contaminated soil composite grouting material gel time compressive strength MICROSTRUCTURE
下载PDF
A two-scale method for identifying mechanical parameters of composite materials with periodic configuration 被引量:9
19
作者 J.Z. Cui X.G. Yu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第6期581-594,共14页
In this paper, a two-scale method (TSM) is presented for identifying the mechanics parameters such as stiffness and strength of composite materials with small periodic configuration. Firstly, a formulation is briefl... In this paper, a two-scale method (TSM) is presented for identifying the mechanics parameters such as stiffness and strength of composite materials with small periodic configuration. Firstly, a formulation is briefly given for two-scale analysis (TSA) of the composite materials. And then a two-scale computation formulation of strains and stresses is developed by displacement solution with orthotropic material coefficients for three kinds of such composites structures, i.e., the tension column with a square cross section, the bending cantilever with a rectangular cross section and the torsion column with a circle cross section. The strength formulas for the three kinds of structures are derived and the TSM procedure is discussed. Finally the numerical results of stiffness and strength are presented and compared with experimental data. It shows that the TSM method in this paper is feasible and valid for predicting both the stiffness and the strength of the composite materials with periodic configuration. 展开更多
关键词 Two-scale method STIFFNESS STRENGTH Composite materials Small periodic configuration
下载PDF
Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics 被引量:11
20
作者 梁金生 梁广川 +3 位作者 祁洪飞 吴子钊 冀志江 金宗哲 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第3期436-439,共4页
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w... Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate. 展开更多
关键词 CERAMICS composite materials phosphate antibacterial ceramic nuclear magnetic resonance (NMR) activated water oxygen concentrations rare earths
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部