期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Combinatorial Discovery and Optimization of New Materials
1
作者 Gao Chen, Zhang Xinyi(National Synchrotron Radiation Lab., University of Science and Technology of China)Yan Dongsheng(Shanghai Institute of Ceramics, the CAS) 《Bulletin of the Chinese Academy of Sciences》 2001年第3期162-165,共4页
The concept of the combinatorial discovery and optimization of new materials, and its background,importance, and application, as well as its current status in the world, are briefly reviewed in this paper.
关键词 Combinatorial Discovery and optimization of New materials IMC
下载PDF
Optimization of clay material mixture ratio and filling process in gypsum mine goaf 被引量:12
2
作者 Liu Zhixiang Dang Wengang +2 位作者 Liu Qingling Chen Guanghui Peng Kang 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期337-342,共6页
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu... Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved. 展开更多
关键词 Mining engineering Filling Material mixture ratio Neural network Chaotic optimization Filling process
下载PDF
Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization 被引量:6
3
作者 Zhe-Qi Lin Hae Chang Gea Shu-Tian Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期730-737,共8页
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to... Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach. 展开更多
关键词 Topology optimization · Energy harvesting · Piezoelectric material ··
下载PDF
Optimal Design of Materials for DJMP Based on Genetic Algorithm
4
作者 冯仲仁 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期89-90,共2页
The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the ... The genetic algorithm was used in optimal design of deep jet method pile.The cost of deep jet method pile in one unit area of foundation was taken as the objective function.All the restrains were listed following the corresponding specification.Suggestions were proposed and the modified.The real-coded Genetic Algorithm was given to deal with the problems of excessive computational cost and premature convergence.Software system of optimal design of deep jet method pile was developed. 展开更多
关键词 DJMP materials optimal design genetic algorithm
下载PDF
Topology Optimization Design of Automotive Engine Bracket
5
作者 Po Wu Qihua Ma +1 位作者 Yiping Luo Chao Tao 《Energy and Power Engineering》 2016年第4期230-235,共6页
According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirement... According to the structural characteristics of the automobile engine bracket, the finite element model of the bracket is established. As the connecting part between the engine and the body, the performance requirements of the automobile engine bracket affect the comfort and the safety of the vehicle directly. Using the RADIOSS solver, the dangerous point of the bracket is analyzed. Under the premise of ensuring its reliability, with the help of OptiStruct software to carry out the topology optimization design, to get the optimal material distribution of the bracket and the final design will meet the performance requirements. 展开更多
关键词 Engine Bracket Optimal Material Distribution Topology optimization
下载PDF
Topology optimization of compliant adaptive wing leading edge with composite materials 被引量:15
6
作者 Tong Xinxing Ge Wenjie +1 位作者 Sun Chao Liu Xiaoyong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第6期1488-1494,共7页
An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber rein... An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error(LSE) between deformed curve and desired aerodynamics shape. After that, the topology structures of wing leading edge of different glass fiber ply-orientations were obtained by using the solid isotropic material with penalization(SIMP) model and sensitivity filtering technique. The desired aerodynamics shape of compliant adaptive wing leading edge was obtained based on the proposed approach. The topology structures of wing leading edge depend on the glass fiber ply-orientation. Finally, the corresponding morphing experiment of compliant wing leading edge with composite materials was implemented, which verified the morphing capability of topology structure and illustrated the feasibility for designing compliant wing leading edge. The present paper lays the basis of ply-orientation optimization for compliant adaptive wing leading edge in unmanned aerial vehicle(UAV) field. 展开更多
关键词 Airfoil Compliant mechanisms Composite materials Topology optimization Wing leading edge
原文传递
Performance analysis and material distribution optimization for sound barriers using a semianalytical meshless method
7
作者 Hanqing Liu Fajie Wang Chuanzeng Zhang 《International Journal of Mechanical System Dynamics》 EI 2023年第4期331-344,共14页
With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common ... With the increase in car ownership,traffic noise pollution has increased considerably and is one of the most severe types of noise pollution that affects living standards.Noise reduction by sound barriers is a common protective measure used in this country and abroad.The acoustic performance of a sound barrier is highly dependent on its shape and material.In this paper,a semianalytical meshless Burton-Miller‐type singular boundary method is proposed to analyze the acoustic performance of various shapes of sound barriers,and the distribution of sound‐absorbing materials on the surface of sound barriers is optimized by combining a solid isotropic material with a penalization method.The acoustic effect of the sound‐absorbing material is simplified as the acoustical impedance boundary condition.The objective of optimization is to minimize the sound pressure in a given reference plane.The volume of the sound‐absorbing material is used as a constraint.The density of the nodes covered with the sound‐absorbing material is used as the design variable.The method of moving asymptotes was used to update the design variables.This model completely avoids the mesh discretization process in the finite element method and requires only boundary nodes.In addition,the approach also does not require the singular integral calculation in the boundary element method.The method is illustrated and validated using numerical examples to demonstrate its accuracy and efficiency. 展开更多
关键词 sound barrier acoustic analysis material distribution optimization semianalytical meshless method
原文传递
Decolorization of Methyl Orange by a new clay-supported nanoscale zero-valent iron:Synergetic effect,efficiency optimization and mechanism 被引量:9
8
作者 Xiaoguang Li Ying Zhao +5 位作者 Beidou Xi Xiaoguang Meng Bin Gong Rui Li Xing Peng Hongliang Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第2期8-17,共10页
In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization... In this study, a novel nanoscale zero-valent iron(n ZVI) composite material was successfully synthesized using a low-cost natural clay, "Hangjin 2~#clay"(HJ clay) as the support and tested for the decolorization of the azo dye Methyl Orange(MO) in aqueous solution by n ZVI particles. According to the characterization and MO decolorization experiments, the sample with 5:1 HJ clay-supported n ZVI(HJ/n ZVI) mass ratio(HJ-n ZVI5) showed the best dispersion and reactivity and the highest MO decolorization efficiency. With the same equivalent Fe0 dosage, the HJ-n ZVI1 and HJ-n ZVI5 samples demonstrated a synergetic effect for the decolorization of MO: their decolorization efficiencies were much higher than that achieved by physical mixing of HJ clay and n ZVIs, or the sum of HJ clay and n ZVIs alone. The synergetic effect was primarily due to the improved dispersion and more effective utilization of the n ZVI particles on/in the composite materials. Higher decolorization efficiency of MO was obtained at larger HJ-n ZVI dosage, higher temperature and under N2 atmosphere, while the MO initial concentration and p H were negatively correlated to the efficiency. HJ clay not only works as a carrier for n ZVI nanoparticles, but also contributes to the decolorization through an "adsorption-enhanced reduction" mechanism. The high efficiency of HJ-n ZVI for decontamination gives it great potential for use in a variety of remediation applications. 展开更多
关键词 Nanoscale zero-valent iron CLAY Material optimization Methyl Orange
原文传递
Digital twin-driven green material optimal selection and evolution in product iterative design
9
作者 Feng Xiang Ya-Dong Zhou +3 位作者 Zhi Zhang Xiao-Fu Zou Fei Tao Ying Zuo 《Advances in Manufacturing》 SCIE EI CAS CSCD 2023年第4期647-662,共16页
In recent years,green concepts have been integrated into the product iterative design in the manufacturing field to address global competition and sustainability issues.However,previous efforts for green material opti... In recent years,green concepts have been integrated into the product iterative design in the manufacturing field to address global competition and sustainability issues.However,previous efforts for green material optimal selection disregarded the interaction and fusion among physical entities,virtual models,and users,resulting in distortions and inaccuracies among user,physical entity,and virtual model such as inconsistency among the expected value,predicted simulation value,and actual performance value of evaluation indices.Therefore,this study proposes a digital twin-driven green material optimal selection and evolution method for product iterative design.Firstly,a novel framework is proposed.Subsequently,an analysis is carried out from six perspectives:the digital twin model construction for green material optimal selection,evolution mechanism of the digital twin model,multi-objective prediction and optimization,algorithm design,decision-making,and product function verification.Finally,taking the material selection of a shared bicycle frame as an example,the proposed method was verified by the prediction and iterative optimization of the carbon emission index. 展开更多
关键词 Product iterative design Digital twin(DT) Green material optimal selection Evolution mechanism Iterative optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部