Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be...Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.展开更多
Aims and Scope: Numerical Mathematics:Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction,analysis and application of numerical methods for solving scientific ...Aims and Scope: Numerical Mathematics:Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction,analysis and application of numerical methods for solving scientific problems.Important research and expository papers devoted to the numerical solution of mathematical problems arising in all areas of science and technology are expected.The journal originates from the journal Numerical Mathematics:A Journal of Chinese Universities (English Edition).展开更多
This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the hist...This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the historical evolution of aesthetics from the classical pursuit of authenticity to the modern shift toward self-expression in art.The discussion then highlights the similarities in the pursuit of truth between mathematics and art,despite their methodological differences.Through an analysis of aesthetic elements in mathematics,such as lines and function graphs,the article illustrates that the beauty of mathematics is not only manifested in cognitive processes but can also be intuitively expressed through visual arts.The paper further examines the influence of mathematics on the development of art,particularly how Leonardo da Vinci applied mathematical principles to his artworks.Additionally,the article addresses art students’perceptions of mathematics,proposes the customization of math courses for art students,and discusses future trends in the integration of mathematics and art,emphasizing the significance of art therapy and the altruistic direction of art.Lastly,the authors use a poster to visually convey the idea that the beauty of mathematics can be experienced through the senses.展开更多
文摘Under the constrained condition induced by the eigenfunction expresson of the potential (u, v)T = (-[A2q, q], [A2p, p])T = f (q, p), the spatial part of the Lax pair of the Kaup-Newell equation is non linearized to be a completely integrable system (R2N, Adp AND dq, H = H-1) with the Hamiltonian H-1 = -[A3q, p]-1/2[A2p, p][A2q, q]. while the nonlinearization of the time part leads to its N-involutive system {H(m)}. The involutive solution of the compatible fsystem (H-1), (H(m)) is mapped by into the solution of the higher order Kaup-Newell equation.
文摘Aims and Scope: Numerical Mathematics:Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction,analysis and application of numerical methods for solving scientific problems.Important research and expository papers devoted to the numerical solution of mathematical problems arising in all areas of science and technology are expected.The journal originates from the journal Numerical Mathematics:A Journal of Chinese Universities (English Edition).
文摘This paper explores the connotations of mathematical aesthetics and its connections with art,facilitated by collaboration with Ester,an individual with an artistic professional background.It begins by tracing the historical evolution of aesthetics from the classical pursuit of authenticity to the modern shift toward self-expression in art.The discussion then highlights the similarities in the pursuit of truth between mathematics and art,despite their methodological differences.Through an analysis of aesthetic elements in mathematics,such as lines and function graphs,the article illustrates that the beauty of mathematics is not only manifested in cognitive processes but can also be intuitively expressed through visual arts.The paper further examines the influence of mathematics on the development of art,particularly how Leonardo da Vinci applied mathematical principles to his artworks.Additionally,the article addresses art students’perceptions of mathematics,proposes the customization of math courses for art students,and discusses future trends in the integration of mathematics and art,emphasizing the significance of art therapy and the altruistic direction of art.Lastly,the authors use a poster to visually convey the idea that the beauty of mathematics can be experienced through the senses.