To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and ho...To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.展开更多
In our recent article [1], we discussed the universal geometric characteristics of the envelope of family of trajectories of projectiles projected with the same speeds and different velocities in a vertical plane unde...In our recent article [1], we discussed the universal geometric characteristics of the envelope of family of trajectories of projectiles projected with the same speeds and different velocities in a vertical plane under the sole influence of gravity;our current investigation is its natural extension. As shown in [1] even for the simplest case where gravity is the only acting external agent literature overlooked reveling the characteristics of the envelope such as its arc-length, the surface area of the enclosed surface and etc. Calculation leading to these has carried out mostly longhand [1]. The current extended version embodies a realistic scenario where the projectiles in addition to gravity encounter linear velocity-dependent media resistance. In order to fulfil objectives similar to [1], we develop two distinct strategies obtaining the analytic equation for the envelope. On one hand, we solve the equations of motion applying traditional longhand approach. On the other hand, we adopt a Computer Algebra System (CAS), e.g. <em>Mathematica</em> [2] [3]. Having these outputs at hand, via mixed-mode calculation—some longhand and some via CAS—we explore its global geometric characteristics such as its arc-length, the surface area of the enclosure. Because of the calculation complexities we could not have achieved our set goals.展开更多
文摘To sharpen the imaging of structures, it is vital to develop a convenient and efficient quantitative algorithm of the optical coherence tomography (OCT) sampling. In this paper a new Monte Carlo model is set up and how light propagates in bio-tissue is analyzed in virtue of mathematics and physics equations. The relations,in which light intensity of Class 1 and Class 2 light with different wavelengths changes with their permeation depth,and in which Class 1 light intensity (signal light intensity) changes with the probing depth, and in which angularly resolved diffuse reflectance and diffuse transmittance change with the exiting angle, are studied. The results show that Monte Carlo simulation results are consistent with the theory data.
文摘In our recent article [1], we discussed the universal geometric characteristics of the envelope of family of trajectories of projectiles projected with the same speeds and different velocities in a vertical plane under the sole influence of gravity;our current investigation is its natural extension. As shown in [1] even for the simplest case where gravity is the only acting external agent literature overlooked reveling the characteristics of the envelope such as its arc-length, the surface area of the enclosed surface and etc. Calculation leading to these has carried out mostly longhand [1]. The current extended version embodies a realistic scenario where the projectiles in addition to gravity encounter linear velocity-dependent media resistance. In order to fulfil objectives similar to [1], we develop two distinct strategies obtaining the analytic equation for the envelope. On one hand, we solve the equations of motion applying traditional longhand approach. On the other hand, we adopt a Computer Algebra System (CAS), e.g. <em>Mathematica</em> [2] [3]. Having these outputs at hand, via mixed-mode calculation—some longhand and some via CAS—we explore its global geometric characteristics such as its arc-length, the surface area of the enclosure. Because of the calculation complexities we could not have achieved our set goals.