The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenber...The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.展开更多
A vectrix cross-product operator identity is presented which shows thesymmetrical relationship between a column matrix and a vectrix. The kinematics ofvectrices and other commonly used relations are then easily obtain...A vectrix cross-product operator identity is presented which shows thesymmetrical relationship between a column matrix and a vectrix. The kinematics ofvectrices and other commonly used relations are then easily obtained with it. The timederivative of the transformation matrix is extended to a more general form ofexpression. The results can be used conveniently in the modeling of flight dynamics inwhich many reference frames must be used.展开更多
基金funded by National Research Council of Thailand(NRCT)and Khon Kaen University:N42A650291。
文摘The goal of this research is to introduce the simulation studies of the vector-host disease nonlinear system(VHDNS)along with the numerical treatment of artificial neural networks(ANNs)techniques supported by Levenberg-Marquardt backpropagation(LMQBP),known as ANNs-LMQBP.This mechanism is physically appropriate,where the number of infected people is increasing along with the limited health services.Furthermore,the biological effects have fadingmemories and exhibit transition behavior.Initially,the model is developed by considering the two and three categories for the humans and the vector species.The VHDNS is constructed with five classes,susceptible humans Sh(t),infected humans Ih(t),recovered humans Rh(t),infected vectors Iv(t),and susceptible vector Sv(t)based system of the fractional-order nonlinear ordinary differential equations.To solve the number of variations of the VHDNS,the numerical simulations are performed using the stochastic ANNs-LMQBP.The achieved numerical solutions for solving the VHDNS using the stochastic ANNs-LMQBP have been described for training,verifying,and testing data to decrease the mean square error(MSE).An extensive analysis is provided using the correlation studies,MSE,error histograms(EHs),state transitions(STs),and regression to observe the accuracy,efficiency,expertise,and aptitude of the computing ANNs-LMQBP.
文摘A vectrix cross-product operator identity is presented which shows thesymmetrical relationship between a column matrix and a vectrix. The kinematics ofvectrices and other commonly used relations are then easily obtained with it. The timederivative of the transformation matrix is extended to a more general form ofexpression. The results can be used conveniently in the modeling of flight dynamics inwhich many reference frames must be used.