Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su...Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time,...In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.展开更多
Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.Th...Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.The multichannel audio is represented with 3-order tensor space and is decomposed into core tensor with three factor matrices in the way of channel,time and frequency.Only the truncated core tensor is transmitted which will be multiplied by the pre-trained factor matrices to reconstruct the original tensor space.Objective and subjective experiments have been done to show a very noticeable compression capability with an acceptable output quality.The novelty of the proposed compression method is that it enables both high compression capability and backward compatibility with limited signal distortion to the hearing.展开更多
In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are est...In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.展开更多
We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matr...We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it.展开更多
In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary c...In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.展开更多
In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innova...In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innovation points are reflected in the following aspects:①The proposed algorithm is not dependent on the Schur complement,and the calculation process is simple and clear;②The complexities of time and space tend to O(n)in the context of world point number is far greater than that of images and cameras,so the calculation magnitude and memory consumption can be reduced significantly;③The proposed algorithm can carry out self-calibration bundle adjustment in single-camera,multi-camera,and variable-camera modes;④Some measures are employed to improve the optimization effects.Experimental tests showed that the proposed algorithm has the ability to achieve state-of-the-art performance in accuracy and robustness,and it has a strong adaptability as well,because the optimized results are accurate and robust even if the initial values have large deviations from the truth.This study could provide theoretical guidance and technical support for the image-based positioning and 3D reconstruction in the fields of photogrammetry,computer vision and robotics.展开更多
A multi spectral image compression and encryption algorithm that combines Karhunen-Loeve(KL) transform,tensor decomposition and chaos is proposed for solving the security problem of multi-spectral image compression an...A multi spectral image compression and encryption algorithm that combines Karhunen-Loeve(KL) transform,tensor decomposition and chaos is proposed for solving the security problem of multi-spectral image compression and transmission.Firstly,in order to eliminate residual spatial redundancy and most of the spectral redundancy,the image is performed by KL transform.Secondly,to further eliminate spatial redundancy and reduce block effects in the compression process,two-dimensional discrete 9/7 wavelet transform is performed,and then Arnold transform and encryption processing on the transformed coefficients are performed.Subsequently,the tensor is decomposed to keep its intrinsic structure intact and eliminate residual space redundancy.Finally,differential pulse filters are used to encode the coefficients,and Tent mapping is used to implement confusion diffusion encryption on the code stream.The experimental results show that the method has high signal-to-noise ratio,fast calculation speed,and large key space,and it is sensitive to keys and plaintexts with a positive effect in spectrum assurance at the same time.展开更多
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ...As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.展开更多
The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing....The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.展开更多
NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution ...NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.展开更多
The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of lim...The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.展开更多
Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tenso...Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.展开更多
The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturb...The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.展开更多
Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decompos...Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.展开更多
The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix...The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented.展开更多
Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can han...Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can handle large tensors.Design/methodology/approach:Considering that tensor addition increases the size of a given tensor along all axes,the proposed method decomposes incoming tensors using existing decomposition results without generating sub-tensors.Additionally,In Par Ten2 avoids the calculation of Khari–Rao products and minimizes shuffling by using the Apache Spark platform.Findings:The performance of In Par Ten2 is evaluated by comparing its execution time and accuracy with those of existing distributed tensor decomposition methods on various datasets.The results confirm that In Par Ten2 can process large tensors and reduce the re-calculation cost of tensor decomposition.Consequently,the proposed method is faster than existing tensor decomposition algorithms and can significantly reduce re-decomposition cost.Research limitations:There are several Hadoop-based distributed tensor decomposition algorithms as well as MATLAB-based decomposition methods.However,the former require longer iteration time,and therefore their execution time cannot be compared with that of Spark-based algorithms,whereas the latter run on a single machine,thus limiting their ability to handle large data.Practical implications:The proposed algorithm can reduce re-decomposition cost when tensors are added to a given tensor by decomposing them based on existing decomposition results without re-decomposing the entire tensor.Originality/value:The proposed method can handle large tensors and is fast within the limited-memory framework of Apache Spark.Moreover,In Par Ten2 can handle static as well as incremental tensor decomposition.展开更多
The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of gr...The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.展开更多
An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function...An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data.展开更多
文摘Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
文摘In this paper, the solution of the matrix second semi-tensor product equation A∘lX∘lB=Cis studied. Firstly, the solvability of the matrix-vector second semi-tensor product equation is investigated. At the same time, the compatibility conditions, the sufficient and necessary conditions and the specific solution methods for the matrix solution are given. Secondly, we further consider the solvability of the second semi-tensor product equation of the matrix. For each part, several examples are given to illustrate the validity of the results.
基金This work was partially supported by the National Natural Science Foundation of China under Grants No.11161140319,No.61001188,the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20101101110020,the Fund for Basic Research from Beijing Institute of Technology under Grant No.20120542011,the Fund for Beijing Higher Education Young Elite Teacher Project under Grant No.YETP1202
文摘Multichannel audio signal is more difficult to be compressed than mono and stereo ones.A novel multichannel audio signal compression method based on tensor representation and decomposition is proposed in this paper.The multichannel audio is represented with 3-order tensor space and is decomposed into core tensor with three factor matrices in the way of channel,time and frequency.Only the truncated core tensor is transmitted which will be multiplied by the pre-trained factor matrices to reconstruct the original tensor space.Objective and subjective experiments have been done to show a very noticeable compression capability with an acceptable output quality.The novelty of the proposed compression method is that it enables both high compression capability and backward compatibility with limited signal distortion to the hearing.
基金This work was supported by the Chinese Outstanding Youth Foundation(No.69925308)Program for Changjiang Scholars and Innovative ResearchTeam in University.
文摘In this paper, solutions to the generalized Sylvester matrix equations AX -XF = BY and MXN -X = TY with A, M ∈ R^n×n, B, T ∈ Rn×r, F, N ∈ R^p×p and the matrices N, F being in companion form, are established by a singular value decomposition of a matrix with dimensions n × (n + pr). The algorithm proposed in this paper for the euqation AX - XF = BY does not require the controllability of matrix pair (A, B) and the restriction that A, F do not have common eigenvalues. Since singular value decomposition is adopted, the algorithm is numerically stable and may provide great convenience to the computation of the solution to these equations, and can perform important functions in many design problems in control systems theory.
文摘We demonstrate that, when computing the LDU decomposition (a typical example of a direct solution method), it is possible to obtain the derivative of a determinant with respect to an eigenvalue of a non-symmetric matrix. Our proposed method augments an LDU decomposition program with an additional routine to obtain a program for easily evaluating the derivative of a determinant with respect to an eigenvalue. The proposed method follows simply from the process of solving simultaneous linear equations and is particularly effective for band matrices, for which memory requirements are significantly reduced compared to those for dense matrices. We discuss the theory underlying our proposed method and present detailed algorithms for implementing it.
文摘In this paper we derive a practical method of solving simultaneously the problem of Schmidt decomposition of quaternion matrix and the orthonormalization of vectors in a generalized unitary space by using elementary column operations on matrices over the quaternion field.
基金National Natural Science Foundation of China(Nos.41571410,41977067,42171422)。
文摘In this study,the problem of bundle adjustment was revisited,and a novel algorithm based on block matrix Cholesky decomposition was proposed to solve the thorny problem of self-calibration bundle adjustment.The innovation points are reflected in the following aspects:①The proposed algorithm is not dependent on the Schur complement,and the calculation process is simple and clear;②The complexities of time and space tend to O(n)in the context of world point number is far greater than that of images and cameras,so the calculation magnitude and memory consumption can be reduced significantly;③The proposed algorithm can carry out self-calibration bundle adjustment in single-camera,multi-camera,and variable-camera modes;④Some measures are employed to improve the optimization effects.Experimental tests showed that the proposed algorithm has the ability to achieve state-of-the-art performance in accuracy and robustness,and it has a strong adaptability as well,because the optimized results are accurate and robust even if the initial values have large deviations from the truth.This study could provide theoretical guidance and technical support for the image-based positioning and 3D reconstruction in the fields of photogrammetry,computer vision and robotics.
基金Supported by the National Natural Science Foundation of China(No.61801455)。
文摘A multi spectral image compression and encryption algorithm that combines Karhunen-Loeve(KL) transform,tensor decomposition and chaos is proposed for solving the security problem of multi-spectral image compression and transmission.Firstly,in order to eliminate residual spatial redundancy and most of the spectral redundancy,the image is performed by KL transform.Secondly,to further eliminate spatial redundancy and reduce block effects in the compression process,two-dimensional discrete 9/7 wavelet transform is performed,and then Arnold transform and encryption processing on the transformed coefficients are performed.Subsequently,the tensor is decomposed to keep its intrinsic structure intact and eliminate residual space redundancy.Finally,differential pulse filters are used to encode the coefficients,and Tent mapping is used to implement confusion diffusion encryption on the code stream.The experimental results show that the method has high signal-to-noise ratio,fast calculation speed,and large key space,and it is sensitive to keys and plaintexts with a positive effect in spectrum assurance at the same time.
文摘As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant No.2011CDB453,2014CFB440)
文摘The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.
基金supported by the National Natural Science Foundation of China(Grant No.11365001)National Major Scientific Equipment Development Projects(Grant No.041514065)+2 种基金the Educational Commission of Jiangxi Province of China(Grant No.GJJ13464)Plan of Science and Technology of Jiangxi Province(Grant No.20141BBE50024)the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(Grant No.RGET1316)
文摘NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.
基金supported by National Natural Science Foundation of China(No.11365001)National Major Scientific Equipment Development Projects(No.041514065)+1 种基金Natural Science Foundation of Jiangxi(No.20161BAB201035)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(No.RGET1316)
文摘The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130002110044)the China Postdoctoral Science Foundation(No.2015M570035)
文摘Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.
文摘The perturbational reanalysis technique of matrix singular value decomposition is applicable to many theoretical and practical problems in mathematics, mechanics, control theory, engineering, etc.. An indirect perturbation method has previously been proposed by the author in this journal, and now the direct perturbation method has also been presented in this paper. The second-order perturbation results of non-repeated singular values and the corresponding left and right singular vectors are obtained. The results can meet the general needs of most problems of various practical applications. A numerical example is presented to demonstrate the effectiveness of the direct perturbation method.
文摘Non-negative matrix factorization (NMF) is a technique for dimensionality reduction by placing non-negativity constraints on the matrix. Based on the PARAFAC model, NMF was extended for three-dimension data decomposition. The three-dimension nonnegative matrix factorization (NMF3) algorithm, which was concise and easy to implement, was given in this paper. The NMF3 algorithm implementation was based on elements but not on vectors. It could decompose a data array directly without unfolding, which was not similar to that the traditional algorithms do, It has been applied to the simulated data array decomposition and obtained reasonable results. It showed that NMF3 could be introduced for curve resolution in chemometrics.
文摘The correlation matrix, which is widely used in eigenvalue decomposition (EVD) or singular value decomposition (SVD), usually can be denoted by R = E[yiy'i]. A novel method for constructing the correlation matrix R is proposed. The proposed algorithm can improve the resolving power of the signal eigenvalues and overcomes the shortcomings of the traditional subspace methods, which cannot be applied to low SNR. Then the proposed method is applied to the direct sequence spread spectrum (DSSS) signal's signature sequence estimation. The performance of the proposed algorithm is analyzed, and some illustrative simulation results are presented.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1D1A1B03931529)。
文摘Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can handle large tensors.Design/methodology/approach:Considering that tensor addition increases the size of a given tensor along all axes,the proposed method decomposes incoming tensors using existing decomposition results without generating sub-tensors.Additionally,In Par Ten2 avoids the calculation of Khari–Rao products and minimizes shuffling by using the Apache Spark platform.Findings:The performance of In Par Ten2 is evaluated by comparing its execution time and accuracy with those of existing distributed tensor decomposition methods on various datasets.The results confirm that In Par Ten2 can process large tensors and reduce the re-calculation cost of tensor decomposition.Consequently,the proposed method is faster than existing tensor decomposition algorithms and can significantly reduce re-decomposition cost.Research limitations:There are several Hadoop-based distributed tensor decomposition algorithms as well as MATLAB-based decomposition methods.However,the former require longer iteration time,and therefore their execution time cannot be compared with that of Spark-based algorithms,whereas the latter run on a single machine,thus limiting their ability to handle large data.Practical implications:The proposed algorithm can reduce re-decomposition cost when tensors are added to a given tensor by decomposing them based on existing decomposition results without re-decomposing the entire tensor.Originality/value:The proposed method can handle large tensors and is fast within the limited-memory framework of Apache Spark.Moreover,In Par Ten2 can handle static as well as incremental tensor decomposition.
文摘The perturbation method for the reanalysis of the singular value decomposition (SVD) of general real matrices is presented in this paper. This is a simple but efficient reanalysis technique for the SVD, which is of great worth to enhance computational efficiency of the iterative analysis problems that require matrix singular value decomposition repeatedly. The asymptotic estimate formulas for the singular values and the corresponding left and right singular vectors up to second-order perturbation components are derived. At the end of the paper the way to extend the perturbation method to the case of general complex matrices is advanced.
基金Supported by the Aviation Science Fund (No. 20080152004)China Postdoctoral Foundation (No. 20090461119)
文摘An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data.