文摘空间聚类是空间数据挖掘的重要手段之一。本文研究了一种基于质心点距离的Max-min distance空间聚类算法:通过加载园地图斑数据,计算其园地图斑质心,判断聚类中心之间的距离,并将符合条件的园地图斑进行聚类,最终将聚类结果可视化表达。本文的算法是利用Visual Studio 2017实验平台和ArcGIS Engine组件式开发环境,采用C#语言进行编写。实验结果表明:1)Max-mindistance聚类通过启发式的选择簇中心,克服了K-means选择簇中心过于邻近的缺点,能够适应嵩口镇等山区丘陵地区空间分布呈破碎的园地数据集分布,有效地实现园地的合理聚类;2)根据连片面积将园地空间聚类结果分为大中小三类,未来嵩口镇可以重点发展园地连片规模较大的村庄,形成规模化的青梅种植园。
文摘针对核模糊C-均值算法(kernel fuzzy C-means,KFCM)随机选择初始聚类中心而不能获得全局最优且在聚类中心较近或重合时易产生一致性聚类等问题,提出一种改进算法。改进算法在原目标函数中引入中心极大化约束项来调控簇间分离度,从而避免算法出现一致性聚类结果。利用磷虾群算法对基于新目标函数的KFCM算法进行优化,使算法不再依赖初始聚类中心,提高算法的稳定性。基于距离最大最小原则产生多组较优的聚类中心作为初始磷虾群体并在算法迭代过程中融合一种新的精英保留策略,从而确保算法收敛到全局极值;通过对个体随机扩散活动进行分段式Logistic混沌扰动,提高算法全局寻优能力。使用KDD Cup 99入侵检测数据进行仿真实验表明,改进算法具有更好的检测性能,解决了传统的聚类算法在入侵检测中稳定性差、检测准确率低的问题。