通过获取案件的判决路径,法院判决系统可以轻松地对案件进行判决.然而,随着司法资源的迅猛增加以及案情特征的多样性,为快速获取案件判决路径提出了挑战.论文利用Rete算法在分析已有法律法规中可能存在的规则集合基础上,根据案件判决路...通过获取案件的判决路径,法院判决系统可以轻松地对案件进行判决.然而,随着司法资源的迅猛增加以及案情特征的多样性,为快速获取案件判决路径提出了挑战.论文利用Rete算法在分析已有法律法规中可能存在的规则集合基础上,根据案件判决路径的有向性,提出了结合案情描述关键字和适用法律规则的概率图模型—Rete-PGM.根据Rete-PGM特征,利用有向图理论及最大后验概率查询算法,提出了适合于Rete-PGM特征的最有可能的路径挖掘算法—DF-MAP(Deep First Max A Posterior),并用实验验证了该算法的性能.通过将所提算法运用于真实的法律文书数据集,实现了真实案件的判决路径挖掘.该模型的提出以及案件判决路径的发现,为创建高效的法院判决系统提供了保障.展开更多
针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,...针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.展开更多
文摘通过获取案件的判决路径,法院判决系统可以轻松地对案件进行判决.然而,随着司法资源的迅猛增加以及案情特征的多样性,为快速获取案件判决路径提出了挑战.论文利用Rete算法在分析已有法律法规中可能存在的规则集合基础上,根据案件判决路径的有向性,提出了结合案情描述关键字和适用法律规则的概率图模型—Rete-PGM.根据Rete-PGM特征,利用有向图理论及最大后验概率查询算法,提出了适合于Rete-PGM特征的最有可能的路径挖掘算法—DF-MAP(Deep First Max A Posterior),并用实验验证了该算法的性能.通过将所提算法运用于真实的法律文书数据集,实现了真实案件的判决路径挖掘.该模型的提出以及案件判决路径的发现,为创建高效的法院判决系统提供了保障.
文摘针对传统Unscented卡尔曼滤波器(Unscented Kalman filter,UKF)在噪声先验统计未知时变情况下非线性滤波精度下降甚至发散的问题,设计了一种带噪声统计估计器的自适应UKF滤波算法.首先根据极大后验(Maximum a posterior,MAP)估计原理,推导出一种次优无偏MAP常值噪声统计估计器;接着在此基础之上,采用指数加权的方法,给出了时变噪声统计估计器的递推公式;最后对自适应UKF算法进行了性能分析.相比于传统UKF,该自适应UKF算法在噪声统计未知时变情况下不仅滤波依然收敛,滤波精度及稳定性显著提高,而且其具有应对噪声变化的自适应能力.仿真实例验证了其有效性.