The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and...The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.展开更多
Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of th...Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.展开更多
An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solut...An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solution may be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solutions were verified by numerical ones in the literature. The approximate analytical solutions can be successfully applied to give the values of skin friction coefficient.展开更多
In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve t...In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.展开更多
The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing....The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.展开更多
The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study a...The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.展开更多
At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this a...At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this algorithm to solve the discrete parabolic problems, analyse its convergence and show that its convergence rale is about (1 - 2p + σp2 ) which is nearly optimal and independent of the parameter τ, where σ τ O((1 +H )(1 + ln(H / h))2 ). 0 【 p 【 1 / σ,τ,h,H are the time step size, finite element parameter and subdomain diameter, respectively.展开更多
A new approach to formulizing a new high-order matrix spectral problem from a normal 2 × 2 matrix modified Korteweg-de Vries (mKdV) spectral problem is presented. It is found that the isospectral evolution equa...A new approach to formulizing a new high-order matrix spectral problem from a normal 2 × 2 matrix modified Korteweg-de Vries (mKdV) spectral problem is presented. It is found that the isospectral evolution equation hierarchy of this new higher-order matrix spectral problem turns out to be the well-known mKdV equation hierarchy. By using the binary nonlinearization method, a new integrable decomposition of the mKdV equation is obtained in the sense of Liouville. The proof of the integrability shows that r-matrix structure is very interesting,展开更多
This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing t...This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing the order of approximation in fixed number of subdomains,rather than by resorting to a further partitioning.The stability and the convergence of this method are proved.展开更多
In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions de...In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached condition...In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.展开更多
A new m × m matrix Kaup-Newell spectral problem is constructed from a normal 2 × 2 matrix Kaup-Newell spectral problem, a new integrable decomposition of the Kaup-Newell equation is presented. Through this p...A new m × m matrix Kaup-Newell spectral problem is constructed from a normal 2 × 2 matrix Kaup-Newell spectral problem, a new integrable decomposition of the Kaup-Newell equation is presented. Through this process, we find the structure of the r-matrix is interesting.展开更多
In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the proble...In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.展开更多
Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we giv...Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.展开更多
The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new inte...The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new integral operator. The solutions obtained in this way require the use of the boundary conditions directly. The obtained results indicate that the new techniques give more suitable and accurate solutions for the Bratu-type problem, compared with those for the ADM and its modification.展开更多
An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods incl...An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods including the wavelet transform(WT)are often limited by relatively low time-frequency resolution,which is responsible for false high horizonassociated space resolution probably indicating more geological structures,especially when close geological anomalies exist.To address this issue,we impose a constraint of minimizing an lp(0<p<1)norm of time-frequency spectral coefficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for the optimal coefficients.Compared with the WT and inverse SD(ISD)using a typical l1-norm constraint,the modified ISD(MISD)using an lp-norm constraint can yield a more compact spectrum contributing to detect the distributions of close geological features.We design a 3 D synthetic dataset involving frequency-close thin geological anomalies and the other3 D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD.The application of 4 D spectrum on a 3 D real dataset with an area of approximately 230 km2 illustrates its potential for detecting deep channels and the karst slope fracture zone.展开更多
In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way o...In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.展开更多
In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis ...In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis will be explained by discussing the nonhomogeneous Kortewege-de Vries (KdV) problems.展开更多
A mathematical modelling by a biofilm under steady state conditions is discussed. The nonlinear differential Equations in biofilm reaction is solved using the Adomian decomposition method. Approximate analytical expre...A mathematical modelling by a biofilm under steady state conditions is discussed. The nonlinear differential Equations in biofilm reaction is solved using the Adomian decomposition method. Approximate analytical expressions for substrate concentration have been derived for all values of parameters δ and SL. These analytical results are compared with the available numerical results and are found to be in good agreement.展开更多
文摘The present paper proposes a mathematical method to numerically treat a class of third-order linear Boundary Value Problems (BVPs). This method is based on the combination of the Adomian Decomposition Method (ADM) and, the modified shooting method. A complete derivation of the proposed method has been provided, in addition to its numerical implementation and, validation via the utilization of the Runge-Kutta method and, other existing methods. The method has been applied to diverse test problems and turned out to perform remarkably. Lastly, the simulated numerical results have been graphically illustrated and, also supported by some absolute error comparison tables.
基金supported by the National Natural Science Foundation of China(Nos.1133200711202147+2 种基金and 9216111)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120032120007)the Open Fund from State Key Laboratory of Aerodynamics(Nos.SKLA201201 and SKLA201301)
文摘Direct numerical simulations are carried out with different disturbance forms introduced into the inlet of a flat plate boundary layer with the Mach number 4.5. According to the biorthogonal eigenfunction system of the linearized Navier-Stokes equations and the adjoint equations, the decomposition of the direct numerical simulation results into the discrete normal mode is easily realized. The decomposition coefficients can be solved by doing the inner product between the numerical results and the eigenfunctions of the adjoint equations. For the quadratic polynomial eigenvalue problem, the inner product operator is given in a simple form, and it is extended to an Nth-degree polynomial eigenvalue problem. The examples illustrate that the simplified mode decomposition is available to analyze direct numerical simulation results.
基金The work was financially supported by the National Natural Science Foundation of China (No.50476083) and the Cross-CenturyTalents Projects of the Educational Ministry of China.
文摘An efficient analytical decomposition technique was presented for solving the singular nonlinear boundary value problem arising in viscous flow when the Crocco variable was introduced. The approximate analytical solution may be represented in terms of a rapid convergent power series with elegantly computable terms. The reliability and efficiency of the approximate solutions were verified by numerical ones in the literature. The approximate analytical solutions can be successfully applied to give the values of skin friction coefficient.
文摘In this paper, an absorbing Fictitious Boundary Condition (FBC) is presented to generate an iterative Domain Decomposition Method (DDM) for analyzing waveguide problems.The relaxed algorithm is introduced to improve the iterative convergence. And the matrix equations are solved using the multifrontal algorithm. The resulting CPU time is greatly reduced.Finally, a number of numerical examples are given to illustrate its accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303212,61170080,61202386)the State Key Program of National Natural Science of China(Grant Nos.61332019,U1135004)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91018008)Major State Basic Research Development Program of China(973 Program)(No.2014CB340600)the Hubei Natural Science Foundation of China(Grant No.2011CDB453,2014CFB440)
文摘The hardness of tensor decomposition problem has many achievements, but limited applications in cryptography, and the tensor decomposition problem has been considered to have the potential to resist quantum computing. In this paper, we firstly proposed a new variant of tensor decomposition problem, then two one-way functions are proposed based on the hard problem. Secondly we propose a key exchange protocol based on the one-way functions, then the security analysis, efficiency, recommended parameters and etc. are also given. The analyses show that our scheme has the following characteristics: easy to implement in software and hardware, security can be reduced to hard problems, and it has the potential to resist quantum computing.Besides the new key exchange can be as an alternative comparing with other classical key protocols.
文摘The current manuscript makes use of the prominent iterative procedure, called the Adomian Decomposition Method (ADM), to tackle some important special differential equations. The equations of curiosity in this study are the singular equations that arise in many physical science applications. Thus, through the application of the ADM, a generalized recursive scheme was successfully derived and further utilized to obtain closed-form solutions for the models under consideration. The method is, indeed, fascinating as respective exact analytical solutions are accurately acquired with only a small number of iterations.
基金The work of the first author is supported by the National Natural Science Foundation of ChinaThe work of the second author is supported by the Natural Science Foundation of Tsinghua University.
文摘At recent, Hourgat et gave a domain decomposition algorithm for elliptic problems which can be implemented in parallel. Many numerical experiments have illustrated its efficiency. In the present paper, we apply this algorithm to solve the discrete parabolic problems, analyse its convergence and show that its convergence rale is about (1 - 2p + σp2 ) which is nearly optimal and independent of the parameter τ, where σ τ O((1 +H )(1 + ln(H / h))2 ). 0 【 p 【 1 / σ,τ,h,H are the time step size, finite element parameter and subdomain diameter, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No 10371070), the Special Funds for Major Specialities of Shanghai Educational Committee.Acknowledgments The authors express their appreciation to Professor Zhou Ru-Guang, Professor Qiao Zhi-Jun, Professor Chen Deng-Yuan and Professor Zhang Da-Jun for their valuable suggestions and help.
文摘A new approach to formulizing a new high-order matrix spectral problem from a normal 2 × 2 matrix modified Korteweg-de Vries (mKdV) spectral problem is presented. It is found that the isospectral evolution equation hierarchy of this new higher-order matrix spectral problem turns out to be the well-known mKdV equation hierarchy. By using the binary nonlinearization method, a new integrable decomposition of the mKdV equation is obtained in the sense of Liouville. The proof of the integrability shows that r-matrix structure is very interesting,
文摘This paper is devoted to the Chebyshev pseudospectral domain decomposition method of one-dimensional elliptic problems,it is easily applied to complex geometry.The approximate accuracy can be increased by increasing the order of approximation in fixed number of subdomains,rather than by resorting to a further partitioning.The stability and the convergence of this method are proved.
文摘In this paper, the Adomian decomposition method with Green’s function (Standard Adomian and Modified Technique) is applied to solve linear and nonlinear tenth-order boundary value problems with boundary conditions defined at any order derivatives. The numerical results obtained with a small amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the decomposition method is of high accuracy, more convenient and efficient for solving high-order boundary value problems.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.
文摘A new m × m matrix Kaup-Newell spectral problem is constructed from a normal 2 × 2 matrix Kaup-Newell spectral problem, a new integrable decomposition of the Kaup-Newell equation is presented. Through this process, we find the structure of the r-matrix is interesting.
文摘In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.
文摘Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.
文摘The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new integral operator. The solutions obtained in this way require the use of the boundary conditions directly. The obtained results indicate that the new techniques give more suitable and accurate solutions for the Bratu-type problem, compared with those for the ADM and its modification.
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the Fundamental Research Funds for the Central Universities(2462019QNXZ03)+2 种基金the Scientific Research and Technology Development Project of China National Petroleum Corporation(2017D-3504)the Major Scientific Research Program of Petrochina Science and Technology Management Department"Comprehensive Seismic Prediction Technology and Software Development of Natural Gas"(2019B-0607)the National Science and Technology Major Project(2017ZX05005-004)。
文摘An important application of spectral decomposition(SD)is to identify subsurface geological anomalies such as channels and karst caves,which may be buried in full-band seismic data.However,the classical SD methods including the wavelet transform(WT)are often limited by relatively low time-frequency resolution,which is responsible for false high horizonassociated space resolution probably indicating more geological structures,especially when close geological anomalies exist.To address this issue,we impose a constraint of minimizing an lp(0<p<1)norm of time-frequency spectral coefficients on the misfit derived by using the inverse WT and apply the generalized iterated shrinkage algorithm to invert for the optimal coefficients.Compared with the WT and inverse SD(ISD)using a typical l1-norm constraint,the modified ISD(MISD)using an lp-norm constraint can yield a more compact spectrum contributing to detect the distributions of close geological features.We design a 3 D synthetic dataset involving frequency-close thin geological anomalies and the other3 D non-stationary dataset involving time-close anomalies to demonstrate the effectiveness of MISD.The application of 4 D spectrum on a 3 D real dataset with an area of approximately 230 km2 illustrates its potential for detecting deep channels and the karst slope fracture zone.
基金supporteal by the Notional Natural Scince Foundation of Hebei Province(D201000921)
文摘In view of the usefulness of Empirical Mode Decomposition (EMD), Artificial Neural Networks ( ANN), and Most Relevant Matching Extension (MRME) methods in dealing with nonlinear signals, we pro- pose a new way of combining these methods to deal with signal prediction. We found the results of combining EMD with either ANN or MRME to have higher prediction precision for a time series than the result of using EMD alone.
文摘In this paper, we present a comparative study between the modified Sumudu decomposition method (MSDM) and homotopy perturbation method (HPM). The study outlines the important features of the two methods. The analysis will be explained by discussing the nonhomogeneous Kortewege-de Vries (KdV) problems.
文摘A mathematical modelling by a biofilm under steady state conditions is discussed. The nonlinear differential Equations in biofilm reaction is solved using the Adomian decomposition method. Approximate analytical expressions for substrate concentration have been derived for all values of parameters δ and SL. These analytical results are compared with the available numerical results and are found to be in good agreement.