A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discus...A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discussed. The results obtained extend the results of Liang (1999, 2000).展开更多
In this paper,the Chow-type maximal inequality for conditional demimartingales is established.By using the Chow-type maximal inequality,the authors provide the maximal inequality for conditional demimartingales based ...In this paper,the Chow-type maximal inequality for conditional demimartingales is established.By using the Chow-type maximal inequality,the authors provide the maximal inequality for conditional demimartingales based on concave Young functions.At last,the moment inequalities for conditional demimartingales are established.展开更多
In this paper we deal with the martingales in variable Lebesgue space over a probability space.We first prove several basic inequalities for conditional expectation operators and give several norm convergence conditio...In this paper we deal with the martingales in variable Lebesgue space over a probability space.We first prove several basic inequalities for conditional expectation operators and give several norm convergence conditions for martingales in variable Lebesgue space.The main aim of this paper is to investigate the boundedness of weak-type and strong-type Doob’s maximal operators in martingale Lebesgue space with a variable exponent.In particular,we present two kinds of weak-type Doob’s maximal inequalities and some necessary and sufficient conditions for strong-type Doob’s maximal inequalities.Finally,we provide two counterexamples to show that the strong-type inequality does not hold in general variable Lebesgue spaces with p>1.展开更多
In this article, we study two types of martingale ergodic processes. We prove that a.e. convergence and L^p convergence as well as maximal inequalities, which are established both in ergodic theory and martingale sett...In this article, we study two types of martingale ergodic processes. We prove that a.e. convergence and L^p convergence as well as maximal inequalities, which are established both in ergodic theory and martingale setting, also hold well for these new sequences of random variables. Moreover, the corresponding theorems in the former two areas turn out to be degenerate cases of the martingale ergodic theorems proved here.展开更多
In an abstract set up, we get strong type inequalities in L^p+1 by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number p is related to Simonenko indices. We apply the ...In an abstract set up, we get strong type inequalities in L^p+1 by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number p is related to Simonenko indices. We apply the results to get strong inequal- ities for maximal functions associated to best Ф-approximation operators in an Orlicz space L^Ф.展开更多
Harremoes obtained some new maximal inequalities for non-negative martingales. In this paper, we get some new maximal and minimal inequalities for non-negative demimartin- gales which generalize the results of Harremo...Harremoes obtained some new maximal inequalities for non-negative martingales. In this paper, we get some new maximal and minimal inequalities for non-negative demimartin- gales which generalize the results of Harremoes. We also obtain an inequality for non-negative demimartingales which generalizes the result of Iksanov and Marynych. Finally we obtain a strong law of large numbers, strong growth rate and integrability of supremum for demimartin- gales which generalize and improve the result of Chow.展开更多
The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. T...The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. This is used to give a sufficient condition of the maximal regularity in the sense of Triebel spaces for vector-valued Cauchy problems with Dirichlet boundary conditions.展开更多
The authors consider Sidon sets of first kind. By comparing them with the Steinhaus sequence, they prove a local Khintchine-Kahane inequality on compact sets. As consequences, they prove the following results for Sido...The authors consider Sidon sets of first kind. By comparing them with the Steinhaus sequence, they prove a local Khintchine-Kahane inequality on compact sets. As consequences, they prove the following results for Sidon series taking values in a Banach space: the summability on a set of positive measure implies the almost everywhere convergence; the contraction principle of Billard-Kahane remains true for Sidon series. As applications, they extend a uniqueness theorem of Zygmund concerning lacunary Fourier series and an analytic continuation theorem of Hadamard concerning lacunary Taylor series. Some of their results still hold for Sidon sets of second kind.展开更多
Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao ...Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao (1996). To show the application of the inequalities, we apply them to discuss the asymptotic normality of the weight function estimate for the fixed design regression model.展开更多
We have pointed out in [1] that so far the L^2 norm inequalities with power weights for the Riesz means σ_R~δ(g)(x) of multiple Fourier integrals have been obtained only by Hirschman and J. L. Rubio de Francia respe...We have pointed out in [1] that so far the L^2 norm inequalities with power weights for the Riesz means σ_R~δ(g)(x) of multiple Fourier integrals have been obtained only by Hirschman and J. L. Rubio de Francia respectively:展开更多
In this paper, we establish some maximal inequalities for demimartingales which generalize and improve the results of Christofides. The maximal inequalities for demimartingales are used as key inequalities to establis...In this paper, we establish some maximal inequalities for demimartingales which generalize and improve the results of Christofides. The maximal inequalities for demimartingales are used as key inequalities to establish other results including Doob’s type maximal inequality for demimartingales, strong laws of large numbers and growth rate for demimartingales and associated random variables. At last, we give an equivalent condition of uniform integrability for demisubmartingales.展开更多
This paper is devoted to the study of semi-commutative harmonic analysis associated with Hermite semigroups. In the first part, we establish the noncommutative maximal inequalities for Bochner-Riesz means associated w...This paper is devoted to the study of semi-commutative harmonic analysis associated with Hermite semigroups. In the first part, we establish the noncommutative maximal inequalities for Bochner-Riesz means associated with Hermite operators and then obtain the corresponding pointwise convergence theorems. In particular, we develop a noncommutative version of Stein's theorem of Bochner-Riesz means for Hermite operators. In the second part, we investigate two noncommutative multiplier theorems. Our approach in this part relies on a noncommutative analog of the classical Littlewood-Paley-Stein theory associated with Hermite semigroups.展开更多
We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterizati...We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.展开更多
In this paper, we obtain the(W Hω^1, W Lω^1) type estimate for the Marcinkiewicz integral and the(W H1 b,ω, W L1ω) type estimate for the commutator generated by a BMO function and the Marcinkiewicz integral, w...In this paper, we obtain the(W Hω^1, W Lω^1) type estimate for the Marcinkiewicz integral and the(W H1 b,ω, W L1ω) type estimate for the commutator generated by a BMO function and the Marcinkiewicz integral, where the kernel satisfies a certain logarithmic type Lipschitz condition.展开更多
基金Supported by Social Science Foundation of China(04BTJ003).
文摘A maximal inequality for the partial sum of NA sequence is constructed. By using this inequality the complete convergence rates in the strong laws for a class of dependent random variables for weighted sums are discussed. The results obtained extend the results of Liang (1999, 2000).
基金supported by the National Natural Science Foundation of China(Nos.11201001,11171001,11426032)the National Social Science Foundation of China(No.14ATJ005)+1 种基金the Anhui Provincial Natural Science Foundation of China(No.1508085J06)the Research Teaching Model Curriculum of Anhui University(No.xjyjkc1407)
文摘In this paper,the Chow-type maximal inequality for conditional demimartingales is established.By using the Chow-type maximal inequality,the authors provide the maximal inequality for conditional demimartingales based on concave Young functions.At last,the moment inequalities for conditional demimartingales are established.
文摘In this paper we deal with the martingales in variable Lebesgue space over a probability space.We first prove several basic inequalities for conditional expectation operators and give several norm convergence conditions for martingales in variable Lebesgue space.The main aim of this paper is to investigate the boundedness of weak-type and strong-type Doob’s maximal operators in martingale Lebesgue space with a variable exponent.In particular,we present two kinds of weak-type Doob’s maximal inequalities and some necessary and sufficient conditions for strong-type Doob’s maximal inequalities.Finally,we provide two counterexamples to show that the strong-type inequality does not hold in general variable Lebesgue spaces with p>1.
文摘In this article, we study two types of martingale ergodic processes. We prove that a.e. convergence and L^p convergence as well as maximal inequalities, which are established both in ergodic theory and martingale setting, also hold well for these new sequences of random variables. Moreover, the corresponding theorems in the former two areas turn out to be degenerate cases of the martingale ergodic theorems proved here.
基金supported by Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)and Universidad Nacional de San Luis(UNSL)with grants PIP 11220110100033CO and PROICO 317902
文摘In an abstract set up, we get strong type inequalities in L^p+1 by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number p is related to Simonenko indices. We apply the results to get strong inequal- ities for maximal functions associated to best Ф-approximation operators in an Orlicz space L^Ф.
基金Supported by the NNSF of China (10871001, 61075009)Provincial Natural Science Research Project of Anhui Colleges (KJ2010A005)+3 种基金Talents Youth Fund of Anhui Province Universities (2010SQRL016ZD)Youth Science Research Fund of Anhui University (2009QN011A)Academic Innovation Team of Anhui University (KJTD001B)Natural Science Research Project of Suzhou College (2009yzk25)
文摘Harremoes obtained some new maximal inequalities for non-negative martingales. In this paper, we get some new maximal and minimal inequalities for non-negative demimartin- gales which generalize the results of Harremoes. We also obtain an inequality for non-negative demimartingales which generalizes the result of Iksanov and Marynych. Finally we obtain a strong law of large numbers, strong growth rate and integrability of supremum for demimartin- gales which generalize and improve the result of Chow.
文摘The authors establish operator-valued Fourier multiplier theorems on Triebel spaces on R^N, where the required smoothness of the multiplier functions depends on the dimension N and the indices of the Triebel spaces. This is used to give a sufficient condition of the maximal regularity in the sense of Triebel spaces for vector-valued Cauchy problems with Dirichlet boundary conditions.
文摘The authors consider Sidon sets of first kind. By comparing them with the Steinhaus sequence, they prove a local Khintchine-Kahane inequality on compact sets. As consequences, they prove the following results for Sidon series taking values in a Banach space: the summability on a set of positive measure implies the almost everywhere convergence; the contraction principle of Billard-Kahane remains true for Sidon series. As applications, they extend a uniqueness theorem of Zygmund concerning lacunary Fourier series and an analytic continuation theorem of Hadamard concerning lacunary Taylor series. Some of their results still hold for Sidon sets of second kind.
基金the Natural Science Foundation of China(10161004)the Natural Science Foundation of Guangxi(04047033)
文摘Some maximal moment inequalities for partial sums of the strong mixing random variable sequence are established. These inequalities use moment sums as up-boundary and improve the corre- sponding ones obtained by Shao (1996). To show the application of the inequalities, we apply them to discuss the asymptotic normality of the weight function estimate for the fixed design regression model.
文摘We have pointed out in [1] that so far the L^2 norm inequalities with power weights for the Riesz means σ_R~δ(g)(x) of multiple Fourier integrals have been obtained only by Hirschman and J. L. Rubio de Francia respectively:
基金supported by National Natural Science Foundation of China (Grant Nos. 10871001, 60803059)the Innovation Group Foundation of Anhui University
文摘In this paper, we establish some maximal inequalities for demimartingales which generalize and improve the results of Christofides. The maximal inequalities for demimartingales are used as key inequalities to establish other results including Doob’s type maximal inequality for demimartingales, strong laws of large numbers and growth rate for demimartingales and associated random variables. At last, we give an equivalent condition of uniform integrability for demisubmartingales.
基金supported by National Natural Science Foundation of China (Grant No. 12071355)National Research Foundation of Korea (Grant No. NRF-2022R1A2C1092320)Samsung Science and Technology Foundation (Grant No. SSTF-BA2002-01)。
文摘This paper is devoted to the study of semi-commutative harmonic analysis associated with Hermite semigroups. In the first part, we establish the noncommutative maximal inequalities for Bochner-Riesz means associated with Hermite operators and then obtain the corresponding pointwise convergence theorems. In particular, we develop a noncommutative version of Stein's theorem of Bochner-Riesz means for Hermite operators. In the second part, we investigate two noncommutative multiplier theorems. Our approach in this part relies on a noncommutative analog of the classical Littlewood-Paley-Stein theory associated with Hermite semigroups.
基金The first author is supported by the NSF of China the Excellent Young Teachers Program of MOE,P.R.C.
文摘We establish operator-valued Fourier multiplier theorems on periodic Triebel spaces, where the required smoothness of the multipliers depends on the indices of the Triebel spaces. This is used to give a characterization of the maximal regularity in the sense of Triebel spaces for Cauchy problems with periodic boundary conditions.
基金Supported by National Natural Science Foundation of China(Grant Nos.11001266,11171345)Beijing Higher Education Young Elite Teacher Project(Grant No.YETP0946)the Fundamental Research Funds for the Central Universities(Grant No.2009QS16)
文摘In this paper, we obtain the(W Hω^1, W Lω^1) type estimate for the Marcinkiewicz integral and the(W H1 b,ω, W L1ω) type estimate for the commutator generated by a BMO function and the Marcinkiewicz integral, where the kernel satisfies a certain logarithmic type Lipschitz condition.