A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction...A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction in the framework,but separates them in the process of iteratiion. Firstly,we estimate the shifting parameters through two lowresolution( LR) images and use the parameters to reconstruct initial HR images. Then,we update the shifting parameters using HR images. The aforementioned steps are repeated until the ideal HR images are obtained. The metrics such as PSNR and SSIM are used to fully evaluate the quality of the reconstructed image. Experimental results indicate that the proposed method can enhance image resolution efficiently.展开更多
In this paper we consider three problems in continuous multi-criteria optimization: An application of the Berge Maximum Theorem, properties of Pareto-retract mappings, and the structure of Pareto sets. The key goal of...In this paper we consider three problems in continuous multi-criteria optimization: An application of the Berge Maximum Theorem, properties of Pareto-retract mappings, and the structure of Pareto sets. The key goal of this work is to present the relationship between the three problems mentioned above. First, applying the Maximum Theorem we construct the Pareto-retract mappings from the feasible domain onto the Pareto-optimal solutions set if the feasible domain is compact. Next, using these mappings we analyze the structure of the Pareto sets. Some basic topological properties of the Pareto solutions sets in the general case and in the convex case are also discussed.展开更多
Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar(InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simult...Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar(InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simultaneously. To solve the dilemma, a new interferogram noise reduction algorithm based on the Maximum A Posteriori(MAP) estimate is introduced in this paper. The algorithm is solved under the Total Generalized Variation(TGV) minimization assumption, which exploits the phase characteristics up to the second order differentiation. The ideal noise-free phase consisting of piecewise smooth areas is involved in this assumption, which is coincident with the natural terrain. In order to overcome the phase wraparound effect, complex plane filter is utilized in this algorithm. The simulation and real data experiments show the algorithm can reduce the noises effectively and meanwhile preserve the interferogram fringes very well.展开更多
The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture d...The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.展开更多
Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,effi...Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,efficient, and of variance of unit weight which is biased. Finally, the marginal maximum posterior estimate formula of the variance with unbiased and efficient , properties is derived.展开更多
提出一种预估计混叠度的PEMAP(pre-estimated MAP (maximum a posteriori))算法,用于卫星图像的地面超分辨率处理.它通过频域分析确定卫星图像的混叠度,将其作为先验信息在空域控制MAP估计的循环迭代,联合估计帧间位移和高分辨率图像....提出一种预估计混叠度的PEMAP(pre-estimated MAP (maximum a posteriori))算法,用于卫星图像的地面超分辨率处理.它通过频域分析确定卫星图像的混叠度,将其作为先验信息在空域控制MAP估计的循环迭代,联合估计帧间位移和高分辨率图像.该算法克服了最大后验概率MAP算法的盲目性和不稳定性,使其适应性更好.实际的卫星图像处理显示了较好的处理效果.展开更多
超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II...超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.展开更多
雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP...雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP)算法实现风电场杂波抑制。在传统MAP算法基础上,考虑气象雷达和风电场位置、地形等因素对雷达波束的影响,并将其作为先验信息来选取有效的气象雷达高仰角扫描数据,以此来改善风电场杂波的抑制效果。针对高扫及低扫区域内径向速度变化较为剧烈所导致的MAP杂波抑制算法性能下降的问题,基于气象目标参数随距离均匀分布特性,用风电场周围未污染气象目标的径向速度作为先验信息,对传统MAP算法抑制后的径向速度进行修正。为定量评价风电场抑制算法的性能,给出了定量评价风电场杂波抑制效果的性能指标,并利用气象雷达不同体扫模式VCP(volume cover pattern)下的Level-Ⅱ数据对本文提出算法的有效性进行了验证。展开更多
本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分...本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分辨率复原图像阶跃边缘的陡坡性质,将三边滤波正则化应用于迭代运算中,更好地保护了图像的陡坡和屋顶边缘.算法可根据图像的纹理自动计算初始图像融合参数以及正则化函数中的梯度阈值等参数,解决了以往超分辨率图像复原算法参数调整复杂的问题.实验结果表明,本文算法在没有人工参与的情况下,重建图像的客观评价和主观质量均有明显提高.展开更多
最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MA...最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MAP信道估计算法,并分析了算法的性能。该算法利用EM算法把多输入输出信道估计问题化简为一系列独立的单输入输出问题,避免了大规模矩阵运算,降低了MAP算法的计算复杂度;为进一步改善MAP算法的数据传输效率及其估计性能,可通过对多个连续的OFDM符号进行联合信道估计。通过仿真实验证明了该算法的有效性。展开更多
基金Supported by the National Natural Science Foundation of China(61405191)
文摘A maximum a posteriori( MAP) algorithm is proposed to improve the accuracy of super resolution( SR) reconstruction in traditional methods. The algorithm applies both joints image registration and SR reconstruction in the framework,but separates them in the process of iteratiion. Firstly,we estimate the shifting parameters through two lowresolution( LR) images and use the parameters to reconstruct initial HR images. Then,we update the shifting parameters using HR images. The aforementioned steps are repeated until the ideal HR images are obtained. The metrics such as PSNR and SSIM are used to fully evaluate the quality of the reconstructed image. Experimental results indicate that the proposed method can enhance image resolution efficiently.
文摘In this paper we consider three problems in continuous multi-criteria optimization: An application of the Berge Maximum Theorem, properties of Pareto-retract mappings, and the structure of Pareto sets. The key goal of this work is to present the relationship between the three problems mentioned above. First, applying the Maximum Theorem we construct the Pareto-retract mappings from the feasible domain onto the Pareto-optimal solutions set if the feasible domain is compact. Next, using these mappings we analyze the structure of the Pareto sets. Some basic topological properties of the Pareto solutions sets in the general case and in the convex case are also discussed.
文摘Interferogram noise reduction is a very important processing step in Interferometric Synthetic Aperture Radar(InSAR) technique. The most difficulty for this step is to remove the noises and preserve the fringes simultaneously. To solve the dilemma, a new interferogram noise reduction algorithm based on the Maximum A Posteriori(MAP) estimate is introduced in this paper. The algorithm is solved under the Total Generalized Variation(TGV) minimization assumption, which exploits the phase characteristics up to the second order differentiation. The ideal noise-free phase consisting of piecewise smooth areas is involved in this assumption, which is coincident with the natural terrain. In order to overcome the phase wraparound effect, complex plane filter is utilized in this algorithm. The simulation and real data experiments show the algorithm can reduce the noises effectively and meanwhile preserve the interferogram fringes very well.
文摘The paper presents an algorithm of automatic target detection in Synthetic Aperture Radar(SAR) images based on Maximum A Posteriori(MAP). The algorithm is divided into three steps. First, it employs Gaussian mixture distribution to approximate and estimate multi-modal histogram of SAR image. Then, based on the principle of MAP, when a priori probability is both unknown and learned respectively, the sample pixels are classified into different classes c = {target,shadow, background}. Last, it compares the results of two different target detections. Simulation results preferably indicate that the presented algorithm is fast and robust, with the learned a priori probability, an approach to target detection is reliable and promising.
文摘Based on an extended Gauss-Markov model where the unknown parameters has the prior normal distribution, this paper derives the maximum posterior estimate formulas of the parameters which are proved to be unbiased,efficient, and of variance of unit weight which is biased. Finally, the marginal maximum posterior estimate formula of the variance with unbiased and efficient , properties is derived.
文摘提出一种预估计混叠度的PEMAP(pre-estimated MAP (maximum a posteriori))算法,用于卫星图像的地面超分辨率处理.它通过频域分析确定卫星图像的混叠度,将其作为先验信息在空域控制MAP估计的循环迭代,联合估计帧间位移和高分辨率图像.该算法克服了最大后验概率MAP算法的盲目性和不稳定性,使其适应性更好.实际的卫星图像处理显示了较好的处理效果.
文摘超声图像中的斑点噪声,降低图像分辨率和对比度,不利于后续图像处理.本文基于最大后验概率(Maximum A Posteriori,MAP)推导出一种新的超声图像分解算法,将原始超声图像分解为无散斑真实图像和散斑图像.使用六组不同的参数值,对Field II仿真的超声图像进行分解试验,得出算法中比例参数对分解结果的影响规律.用该方法分解三幅人体超声图像,得到的真实图像平滑性好,且能较好的保留细节和边缘.本文提出的分解算法可用于超声图像的去噪,且分解得到的真实图像和散斑图像可用于特征提取、图像分割和图像分类等.
文摘雷达波束覆盖区域内风电场后向散射引起的杂波与气象目标回波具有类似的特性,进而影响气象目标参数估计的稳健性,导致气象雷达产生误检测与误识别。利用气象雷达二次产品(Level-Ⅱ)实测数据,基于最大后验概率(maximum a posteriori,MAP)算法实现风电场杂波抑制。在传统MAP算法基础上,考虑气象雷达和风电场位置、地形等因素对雷达波束的影响,并将其作为先验信息来选取有效的气象雷达高仰角扫描数据,以此来改善风电场杂波的抑制效果。针对高扫及低扫区域内径向速度变化较为剧烈所导致的MAP杂波抑制算法性能下降的问题,基于气象目标参数随距离均匀分布特性,用风电场周围未污染气象目标的径向速度作为先验信息,对传统MAP算法抑制后的径向速度进行修正。为定量评价风电场抑制算法的性能,给出了定量评价风电场杂波抑制效果的性能指标,并利用气象雷达不同体扫模式VCP(volume cover pattern)下的Level-Ⅱ数据对本文提出算法的有效性进行了验证。
文摘本文论证了超分辨率图像复原计算中的两个性质,并基于此在MAP(Maximum A Posteriori)框架下提出了一种新的纹理自适应算法.算法首先根据低分辨率图像和高分辨率图像近似计算的可类比性质计算初始图像,使初始图像的质量更高,并根据超分辨率复原图像阶跃边缘的陡坡性质,将三边滤波正则化应用于迭代运算中,更好地保护了图像的陡坡和屋顶边缘.算法可根据图像的纹理自动计算初始图像融合参数以及正则化函数中的梯度阈值等参数,解决了以往超分辨率图像复原算法参数调整复杂的问题.实验结果表明,本文算法在没有人工参与的情况下,重建图像的客观评价和主观质量均有明显提高.
文摘最大后验概率(maximum a posteriori,MAP)信道估计算法应用于MIMO-OFDM系统时将带来大规模矩阵求逆和乘积运算,且OFDM符号的数据传输效率随着发送天线的增多逐渐下降。针对这些弊端,提出一种基于期望最大化(expectation maximum,EM)的MAP信道估计算法,并分析了算法的性能。该算法利用EM算法把多输入输出信道估计问题化简为一系列独立的单输入输出问题,避免了大规模矩阵运算,降低了MAP算法的计算复杂度;为进一步改善MAP算法的数据传输效率及其估计性能,可通过对多个连续的OFDM符号进行联合信道估计。通过仿真实验证明了该算法的有效性。