In this paper we prove that the generalized permutation graph G(n, k) is upper embeddable if it has at most two odd subcycles, and that the maximum genus of G(n, k) is more than 「β(G(n,k))/3」 in most cases.
Let G be a 3 edge connected graph (possibly with multiple edges or loops), and let γ M(G) and β(G) be the maximum genus and the Betti number of G, respectively. Then γ M(G)≥β(G)/3 can be proved and this...Let G be a 3 edge connected graph (possibly with multiple edges or loops), and let γ M(G) and β(G) be the maximum genus and the Betti number of G, respectively. Then γ M(G)≥β(G)/3 can be proved and this answers a question posed by Chen, et al. in 1996.F FIRST OR展开更多
It is proved that every 3 connected loopless multigraph has maximum genus at least one third of its cycle rank plus one if its cycle rank is not less than ten, and if its cycle rank is less than ten,it is upper emb...It is proved that every 3 connected loopless multigraph has maximum genus at least one third of its cycle rank plus one if its cycle rank is not less than ten, and if its cycle rank is less than ten,it is upper embeddable.This lower bound is tight.There are infinitely many 3 connected loopless multigraphs attaining this bound.展开更多
The lower bounds on the maximum genus of loopless graphs are obtained according to the connectivity of these graphs. This not only answers a question of Chen, Archdeacon and Gross, but also generalizes the previous kn...The lower bounds on the maximum genus of loopless graphs are obtained according to the connectivity of these graphs. This not only answers a question of Chen, Archdeacon and Gross, but also generalizes the previous known results. Thus, a picture of the lower bounds on the maximum genus of loopless multigraphs is presented.展开更多
It is known (for example, see [4]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, we establish a best upper bound on the Betti deficiency of a graph bounded...It is known (for example, see [4]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, we establish a best upper bound on the Betti deficiency of a graph bounded by its independence number and girth, and immediately obtain a new result on the maximum genus.展开更多
It is known (for example see [2]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, the authors establish an upper bound on the Betti deficiency in terms of th...It is known (for example see [2]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, the authors establish an upper bound on the Betti deficiency in terms of the independence number as well as the girth of a graph, and thus use the formulation in [2] to translate this result to lower bound on the maximum genus. Meantime it is shown that both of the bounds are best possible.展开更多
There are many results on the maximum genus, among which most are written for the existence of values of such embeddings, and few attention has been paid to the estimation of such embeddings and their applications. In...There are many results on the maximum genus, among which most are written for the existence of values of such embeddings, and few attention has been paid to the estimation of such embeddings and their applications. In this paper we study the number of maximum genus embeddings for a graph and find an exponential lower bound for such numbers. Our results show that in general case, a simple connected graph has exponentially many distinct maximum genus embeddings. In particular, a connected cubic graph G of order n always has at least $ (\sqrt 2 )^{m + n + \tfrac{\alpha } {2}} $ distinct maximum genus embeddings, where α and m denote, respectively, the number of inner vertices and odd components of an optimal tree T. What surprise us most is that such two extremal embeddings (i.e., the maximum genus embeddings and the genus embeddings) are sometimes closely related with each other. In fact, as applications, we show that for a sufficient large natural number n, there are at least $ C2^{\tfrac{n} {4}} $ many genus embeddings for complete graph K n with n ≡ 4, 7, 10 (mod12), where C is a constance depending on the value of n of residue 12. These results improve the bounds obtained by Korzhik and Voss and the methods used here are much simpler and straight.展开更多
A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonsep...A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonseparating independent set containing Z(G)vertices is called the maximum nonseparating independent set.In this paper,we firstly give an upper bound for Z(G)of regular graphs and determine Z(G)for some types of circular graphs.Secondly,we show a relationship between Z(G)and the maximum genus M(G)of a general graph.Finally,an important formula is provided to compute Z(G),i.e.,Z(G)=Σx∈I dI(x)+2(M(G-I)-γM(G))+(ξ(G-I)-ξ(G));where I is the maximum nonseparating independent set and ξ(G)is the Betti deficiency(Xuong,1979)of G.展开更多
It is shown that the lower bound on the maximum genus of a 3-edge connected loopless graph is at least one-third of its cycle rank. Moreover, this lower bound is tight. There are infinitely such graphs attaining the b...It is shown that the lower bound on the maximum genus of a 3-edge connected loopless graph is at least one-third of its cycle rank. Moreover, this lower bound is tight. There are infinitely such graphs attaining the bound.展开更多
A relative embedding of a connected graph is an embedding of the graph in some surface with respect to some closed walks, each of which bounds a face of the embedding. The relative maximum genus of a connected graph i...A relative embedding of a connected graph is an embedding of the graph in some surface with respect to some closed walks, each of which bounds a face of the embedding. The relative maximum genus of a connected graph is the maximum of integer k with the property that the graph has a relative embedding in the orientable surface with k handles. A polynomial algorithm is provided for constructing relative maximum genus embedding of a graph of the relative tree of the graph is planar. Under this condition, just like maximum genus embedding, a graph does not have any locally strict maximum genus.展开更多
A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vert...A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.展开更多
In this paper, the problem of construction of exponentially many minimum genus crouchdings of complete graphs in surfaces are studied. There are three approaches to solve this problem. The first approach is to constru...In this paper, the problem of construction of exponentially many minimum genus crouchdings of complete graphs in surfaces are studied. There are three approaches to solve this problem. The first approach is to construct exponentially many graphs by the theory of graceful labeling of paths; the second approach is to find a current assignment of the current graph by the theory of current graph; the third approach is to find exponentially many embedding (or rotation) schemes of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph. According to this three approaches, we can construct exponentially many minimum genus embeddings of complete graph K12s+8 in orientable surfaces, which show that there are at least 10/5 × (200/9)^s distinct minimum genus embeddings for K12s+8 in orientable surfaces. We have also proved that K12s+8 has at least 10/3× (200/9)^s distinct minimum genus embeddings in non-orientable surfaces.展开更多
In this paper, we consider the problem of construction of exponentially many distinct genus embeddings of complete graphs. There are three approaches to solve the problem. The first approach is to construct exponentia...In this paper, we consider the problem of construction of exponentially many distinct genus embeddings of complete graphs. There are three approaches to solve the problem. The first approach is to construct exponentially many current graphs by the theory of graceful labellings of paths; the second approach is to find a current assignment of the current graph by the theory of current graph; the third approach is to find exponentially many embedding(or rotation) scheme of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph. According to these three approaches, we can construct exponentially many distinct genus embeddings of complete graph K12s+3, which show that there are at least1/2× (200/9)s distinct genus embeddings for K12s+3.展开更多
Let G be a simple graph of order n and girth g. For any two adjacent vertices u and v of G, if d G (u) + d G (v) ? n ? 2g + 5 then G is up-embeddable. In the case of 2-edge-connected (resp. 3-edge-connected) graph, G ...Let G be a simple graph of order n and girth g. For any two adjacent vertices u and v of G, if d G (u) + d G (v) ? n ? 2g + 5 then G is up-embeddable. In the case of 2-edge-connected (resp. 3-edge-connected) graph, G is up-embeddable if d G (u) + d G (v) ? n ? 2g + 3 (resp. d G (u) + d G (v) ? n ? 2g ?5) for any two adjacent vertices u and v of G. Furthermore, the above three lower bounds are all shown to be tight.展开更多
In this paper, we investigate fundamental cycles in a graph G and their relations with graph embeddings. We show that a graph G may be embedded in an orientable surface with genus at least g if and only if for any spa...In this paper, we investigate fundamental cycles in a graph G and their relations with graph embeddings. We show that a graph G may be embedded in an orientable surface with genus at least g if and only if for any spanning tree T, there exists a sequence of fundamental cycles C 1,C 2,…,C 2g with C 2i?1 ∩ C 2i ≠ /0 for 1 ? i ? g. In particular, among β(G) fundamental cycles of any spanning tree T of a graph G, there are exactly 2γM (G) cycles C 1, C 2,…,C 2γM(G) such that C 2i?1 ∩ C 2i ≠ /0 for 1 ? i ? γM (G), where β(G) and γM (G) are the Betti number and the maximum genus of G, respectively. This implies that it is possible to construct an orientable embedding with large genus of a graph G from an arbitrary spanning tree T (which may have very large number of odd components in G E(T)). This is different from the earlier work of Xuong and Liu, where spanning trees with small odd components are needed. In fact, this makes a common generalization of Xuong, Liu and Fu et al. Furthermore, we show that (1) this result is useful for locating the maximum genus of a graph having a specific edge-cut. Some known results for embedded graphs are also concluded; (2) the maximum genus problem may be reduced to the maximum matching problem. Based on this result and the algorithm of Micali-Vazirani, we present a new efficient algorithm to determine the maximum genus of a graph in $ O((\beta (G))^{\frac{5} {2}} ) $ steps. Our method is straight and quite different from the algorithm of Furst, Gross and McGeoch which depends on a result of Giles where matroid parity method is needed.展开更多
Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth g, r = [g-1/2]. For any edge uv ∈ E(G), if dG(u) + dG(v) 〉2v(G) - 2(k + 1)(9 - 2r)/(k + 1)(2r - 1)(g - 2r)...Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth g, r = [g-1/2]. For any edge uv ∈ E(G), if dG(u) + dG(v) 〉2v(G) - 2(k + 1)(9 - 2r)/(k + 1)(2r - 1)(g - 2r)+ 2(g - 2r - 1),then G is up-embeddable. Furthermore, similar results for 3-edge connected simple graphs are also obtained.展开更多
基金The NSF (10671073) of Chinathe Scientific Fund (03080045) of the Gathered Talents by Nantong UniversityNSF (07KJB110090) of Jiangsu University.
文摘In this paper we prove that the generalized permutation graph G(n, k) is upper embeddable if it has at most two odd subcycles, and that the maximum genus of G(n, k) is more than 「β(G(n,k))/3」 in most cases.
文摘Let G be a 3 edge connected graph (possibly with multiple edges or loops), and let γ M(G) and β(G) be the maximum genus and the Betti number of G, respectively. Then γ M(G)≥β(G)/3 can be proved and this answers a question posed by Chen, et al. in 1996.F FIRST OR
文摘It is proved that every 3 connected loopless multigraph has maximum genus at least one third of its cycle rank plus one if its cycle rank is not less than ten, and if its cycle rank is less than ten,it is upper embeddable.This lower bound is tight.There are infinitely many 3 connected loopless multigraphs attaining this bound.
文摘The lower bounds on the maximum genus of loopless graphs are obtained according to the connectivity of these graphs. This not only answers a question of Chen, Archdeacon and Gross, but also generalizes the previous known results. Thus, a picture of the lower bounds on the maximum genus of loopless multigraphs is presented.
基金Supported by the National Natural Scicnce Foundation of China !(19801013)
文摘It is known (for example, see [4]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, we establish a best upper bound on the Betti deficiency of a graph bounded by its independence number and girth, and immediately obtain a new result on the maximum genus.
基金National Natural Science Foundation of China!(No.19801013).
文摘It is known (for example see [2]) that the maximum genus of a graph is mainly determined by the Betti deficiency of the graph. In this paper, the authors establish an upper bound on the Betti deficiency in terms of the independence number as well as the girth of a graph, and thus use the formulation in [2] to translate this result to lower bound on the maximum genus. Meantime it is shown that both of the bounds are best possible.
基金the National Natural Science Foundation of China (Grant No. 10671073)Scienceand Technology commission of Shanghai Municipality (Grant No. 07XD14011)Shanghai Leading AcademicDiscipline Project (Grant No. B407)
文摘There are many results on the maximum genus, among which most are written for the existence of values of such embeddings, and few attention has been paid to the estimation of such embeddings and their applications. In this paper we study the number of maximum genus embeddings for a graph and find an exponential lower bound for such numbers. Our results show that in general case, a simple connected graph has exponentially many distinct maximum genus embeddings. In particular, a connected cubic graph G of order n always has at least $ (\sqrt 2 )^{m + n + \tfrac{\alpha } {2}} $ distinct maximum genus embeddings, where α and m denote, respectively, the number of inner vertices and odd components of an optimal tree T. What surprise us most is that such two extremal embeddings (i.e., the maximum genus embeddings and the genus embeddings) are sometimes closely related with each other. In fact, as applications, we show that for a sufficient large natural number n, there are at least $ C2^{\tfrac{n} {4}} $ many genus embeddings for complete graph K n with n ≡ 4, 7, 10 (mod12), where C is a constance depending on the value of n of residue 12. These results improve the bounds obtained by Korzhik and Voss and the methods used here are much simpler and straight.
基金supported by the National Natural Science Foundation of China(Nos.11171114,11401576,61662066,62072296)Science and Technology Commission of Shanghai Municipality(No.13dz2260400)。
文摘A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonseparating independent set containing Z(G)vertices is called the maximum nonseparating independent set.In this paper,we firstly give an upper bound for Z(G)of regular graphs and determine Z(G)for some types of circular graphs.Secondly,we show a relationship between Z(G)and the maximum genus M(G)of a general graph.Finally,an important formula is provided to compute Z(G),i.e.,Z(G)=Σx∈I dI(x)+2(M(G-I)-γM(G))+(ξ(G-I)-ξ(G));where I is the maximum nonseparating independent set and ξ(G)is the Betti deficiency(Xuong,1979)of G.
文摘It is shown that the lower bound on the maximum genus of a 3-edge connected loopless graph is at least one-third of its cycle rank. Moreover, this lower bound is tight. There are infinitely such graphs attaining the bound.
文摘A relative embedding of a connected graph is an embedding of the graph in some surface with respect to some closed walks, each of which bounds a face of the embedding. The relative maximum genus of a connected graph is the maximum of integer k with the property that the graph has a relative embedding in the orientable surface with k handles. A polynomial algorithm is provided for constructing relative maximum genus embedding of a graph of the relative tree of the graph is planar. Under this condition, just like maximum genus embedding, a graph does not have any locally strict maximum genus.
文摘A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.
基金Supported by NSFC(Grant Nos.10771225,11171114)the Scientific Research Pro jects of State Ethnic Affairs Commission(Grant No.14ZYZ016)
文摘In this paper, the problem of construction of exponentially many minimum genus crouchdings of complete graphs in surfaces are studied. There are three approaches to solve this problem. The first approach is to construct exponentially many graphs by the theory of graceful labeling of paths; the second approach is to find a current assignment of the current graph by the theory of current graph; the third approach is to find exponentially many embedding (or rotation) schemes of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph. According to this three approaches, we can construct exponentially many minimum genus embeddings of complete graph K12s+8 in orientable surfaces, which show that there are at least 10/5 × (200/9)^s distinct minimum genus embeddings for K12s+8 in orientable surfaces. We have also proved that K12s+8 has at least 10/3× (200/9)^s distinct minimum genus embeddings in non-orientable surfaces.
基金Supported by the National Natural Science Foundation of China(No.10771225,11171114)
文摘In this paper, we consider the problem of construction of exponentially many distinct genus embeddings of complete graphs. There are three approaches to solve the problem. The first approach is to construct exponentially many current graphs by the theory of graceful labellings of paths; the second approach is to find a current assignment of the current graph by the theory of current graph; the third approach is to find exponentially many embedding(or rotation) scheme of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph. According to these three approaches, we can construct exponentially many distinct genus embeddings of complete graph K12s+3, which show that there are at least1/2× (200/9)s distinct genus embeddings for K12s+3.
基金supported by National Natural Science Foundation of China (Grant No. 10571013)
文摘Let G be a simple graph of order n and girth g. For any two adjacent vertices u and v of G, if d G (u) + d G (v) ? n ? 2g + 5 then G is up-embeddable. In the case of 2-edge-connected (resp. 3-edge-connected) graph, G is up-embeddable if d G (u) + d G (v) ? n ? 2g + 3 (resp. d G (u) + d G (v) ? n ? 2g ?5) for any two adjacent vertices u and v of G. Furthermore, the above three lower bounds are all shown to be tight.
基金supported by National Natural Science Foundation of China (Grant Nos.10271048,10671073)Science and Technology Commission of Shanghai Municipality (Grant No.07XD14011)Shanghai Leading Discipline Project (Project No.B407)
文摘In this paper, we investigate fundamental cycles in a graph G and their relations with graph embeddings. We show that a graph G may be embedded in an orientable surface with genus at least g if and only if for any spanning tree T, there exists a sequence of fundamental cycles C 1,C 2,…,C 2g with C 2i?1 ∩ C 2i ≠ /0 for 1 ? i ? g. In particular, among β(G) fundamental cycles of any spanning tree T of a graph G, there are exactly 2γM (G) cycles C 1, C 2,…,C 2γM(G) such that C 2i?1 ∩ C 2i ≠ /0 for 1 ? i ? γM (G), where β(G) and γM (G) are the Betti number and the maximum genus of G, respectively. This implies that it is possible to construct an orientable embedding with large genus of a graph G from an arbitrary spanning tree T (which may have very large number of odd components in G E(T)). This is different from the earlier work of Xuong and Liu, where spanning trees with small odd components are needed. In fact, this makes a common generalization of Xuong, Liu and Fu et al. Furthermore, we show that (1) this result is useful for locating the maximum genus of a graph having a specific edge-cut. Some known results for embedded graphs are also concluded; (2) the maximum genus problem may be reduced to the maximum matching problem. Based on this result and the algorithm of Micali-Vazirani, we present a new efficient algorithm to determine the maximum genus of a graph in $ O((\beta (G))^{\frac{5} {2}} ) $ steps. Our method is straight and quite different from the algorithm of Furst, Gross and McGeoch which depends on a result of Giles where matroid parity method is needed.
基金Supported by National Natural Science Foundation of China(No.11301171)Hunan youth backbone teachers training Program(H21308)+1 种基金Tianyuan Fund for Mathematics(No.11226284)Hunan Province Natural Science Fund Projects(No.13JJ4079,14JJ7047)
文摘Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth g, r = [g-1/2]. For any edge uv ∈ E(G), if dG(u) + dG(v) 〉2v(G) - 2(k + 1)(9 - 2r)/(k + 1)(2r - 1)(g - 2r)+ 2(g - 2r - 1),then G is up-embeddable. Furthermore, similar results for 3-edge connected simple graphs are also obtained.