This paper introduces a simple combining technique for cooperative relay scheme which is based on a Detect-and-Forward (DEF) relay protocol. Cooperative relay schemes have been introduced in earlier works but most of ...This paper introduces a simple combining technique for cooperative relay scheme which is based on a Detect-and-Forward (DEF) relay protocol. Cooperative relay schemes have been introduced in earlier works but most of them ignore the quality of the source-relay (S-R) channel in the detection at the destination, although this channel can contribute heavily to the performance of cooperation schemes. For optimal detection, the destination has to account all possible error events at the relay as well. Here we present a Maximum Likelihood criterion (ML) at the destination which considers closed-form expressions for each symbol error rate (SER) to facilitate the detection. Computer simulations show that significant diversity gain and Packet Error Rate (PER) performance can be achieved by the proposed scheme with good tolerance to propagation errors from noisy relays. In fact, diversity gain is increased with additional relay nodes. We compare this scheme against the baseline Cooperative-Maximum Ratio Combining (C-MRC).展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
文摘This paper introduces a simple combining technique for cooperative relay scheme which is based on a Detect-and-Forward (DEF) relay protocol. Cooperative relay schemes have been introduced in earlier works but most of them ignore the quality of the source-relay (S-R) channel in the detection at the destination, although this channel can contribute heavily to the performance of cooperation schemes. For optimal detection, the destination has to account all possible error events at the relay as well. Here we present a Maximum Likelihood criterion (ML) at the destination which considers closed-form expressions for each symbol error rate (SER) to facilitate the detection. Computer simulations show that significant diversity gain and Packet Error Rate (PER) performance can be achieved by the proposed scheme with good tolerance to propagation errors from noisy relays. In fact, diversity gain is increased with additional relay nodes. We compare this scheme against the baseline Cooperative-Maximum Ratio Combining (C-MRC).
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.