期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A maximum noise fraction transform with improved noise estimation for hyperspectral images 被引量:6
1
作者 LIU Xiang ZHANG Bing +1 位作者 GAO LianRu CHEN DongMei 《Science in China(Series F)》 2009年第9期1578-1587,共10页
Feature extraction is often performed to reduce spectral dimension of hyperspectral images before image classification. The maximum noise fraction (MNF) transform is one of the most commonly used spectral feature ex... Feature extraction is often performed to reduce spectral dimension of hyperspectral images before image classification. The maximum noise fraction (MNF) transform is one of the most commonly used spectral feature extraction methods. The spectral features in several bands of hyperspectral images are submerged by the noise. The MNF transform is advantageous over the principle component (PC) transform because it takes the noise information in the spatial domain into consideration. However, the experiments described in this paper demonstrate that classification accuracy is greatly influenced by the MNF transform when the ground objects are mixed together. The underlying mechanism of it is revealed and analyzed by mathematical theory. In order to improve the performance of classification after feature extraction when ground objects are mixed in hyperspectral images, a new MNF transform, with an improved method of estimating hyperspectral image noise covariance matrix (NCM), is presented. This improved MNF transform is applied to both the simulated data and real data. The results show that compared with the classical MNF transform, this new method enhanced the ability of feature extraction and increased classification accuracy. 展开更多
关键词 principal component transform maximum noise fraction transform hyperspectral image noise estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部