Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-...Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.展开更多
Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the...Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.展开更多
Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of...Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of the host through its boring activity;it can also be a vector of various pathogenic fungi. This study was conducted to investigate the environmental variables limiting the distribution of H. ligniperda and the change trend of its suitable areas under climate change.Results: We used a maximum entropy model to predict the potential geographical distribution of H. ligniperda on a global scale under near current and future climatic scenarios using its occurrence data and environmental variables. The result shows that the areas surrounding the Mediterranean region, the eastern coastal areas of Asia, and the southeastern part of Oceania are highly suitable for H. ligniperda. The environmental variables with the greatest effect on the distribution of H. ligniperda were determined using the jackknife method and Pearson’s correlation analysis and included the monthly average maximum temperature in April, precipitation of driest quarter, the monthly average minimum temperature in December, precipitation of coldest quarter, mean temperature of driest quarter and mean diurnal range.Conclusions: Excessive precipitation in winter and low temperatures in spring had a great effect on the distribution of H. ligniperda. The potential geographical distribution of H. ligniperda was predicted to change under future climatic conditions compared with near current climate conditions. Highly suitable areas, moderately suitable areas and low suitable areas were predicted to increase by 59.99%, 44.43% and 22.92%, respectively, under the2081–2100 ssp245 scenario.展开更多
Five principles and methods are proposed for estimating the maximum potential earthquakesin low seismicity areas,and their applicabilities are discussed,taking Sichuan basin as asample area.The proposed principles and...Five principles and methods are proposed for estimating the maximum potential earthquakesin low seismicity areas,and their applicabilities are discussed,taking Sichuan basin as asample area.The proposed principles and methods are not only on the grounds of thegeological tectonics but also considered fully the mutual complementation between geologicaland seismological methods.They will be helpful to the study of engineering seismology andthe assessment of designing ground motion parameters in low seismicity areas.展开更多
The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is ...The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is rather complicated and even uncertain. It is important for us how to assess the magnitudes of maximum potential earthquakes and the seismic risk of the faults. The authors make reference to the method that Wen Xueze, et ai. (2007) developed to assess the magnitudes of maximum potential earthquakes in sub-areas of moderately and weakly active faults in the eastern Chinese Mainland, and brought forward an empirical relationship between the maximum magnitudes Mmax and the at/b values of the sub-areas' frequency- magnitude relationships in the Lanzhou area. By using this empirical relationship, the authors have estimated the upper-limits Mu of the Zhuanglang river and Baiyin Baiyangshu river active faults near Lanzhou city as Ms6.9 and 6.3, respectively. In addition, they have assessed the average interval recurrence time and the probabilities of destructive earthquakes on the faults.展开更多
基金Under the auspices of National Basic Research Program of China (No.2010CB951704)Institutional Consolidation for Coordinated and Integrated Monitoring of Natural Resources towards Sustainable Development and Environmental Conservation in the Hindu Kush-Karakoram-Himalaya Mountain Complex (No.76444-000)External Cooperation Program of Chinese Academy of Sciences (No.GJHZ0954)
文摘Tibetan spruce (Picea smithiana) is an endemic species of the Himalayas,and it distributes only in a re-stricted area with very low number.To address the lack of detailed distributional information,we used maximum en-tropy (Maxent) niche-based model to predict the species' potential distribution from limited occurrence-only records.The location data of P.smithiana,relative bioclimatic variables,vegetation data,digital elevation model (DEM),and the derived data were analyzed in Maxent.The receiver operating characteristic (ROC) curve was applied to assess the prediction accuracy.The Maxent jackknife test was performed to quantify the training gains from data layers and the response of P.smithiana distribution to four typical environmental variables was analyzed.Results show that the model performs well at the regional scale.There is a potential for continued expansion of P.smithiana population numbers and distribution in China.P.smithiana potentially distributes in the lower reaches of Gyirong Zangbo and Poiqu rivers in Gyirong and Nyalam counties in Qomolangma (Mount Everest) National Nature Preserve (QNNP),China.The species prefers warm temperate climate in mountain area and mainly distributes in needle-leaved evergreen closed to open forest and mixed forest along the river valley at relatively low altitudes of about 2000-3000 m.Model simulations suggest that distribution patterns of rare species with few species numbers can be well predicted by Max-ent.
基金supported by the the Basic Frontier Project of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E3500201)the Xinjiang Tianshan Talent Program(2022TSYCLJ0002)the Fundamental Research Funds for the Central Universities(ZY20240223).
文摘Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.
基金funded by National Key R&D Program of China(No. 2021YFC2600400)National Natural Science Foundation of China(No. 32171794)Forestry Science and Technology Innovation Special of Jiangxi Forestry Department (No. 201912)
文摘Background: Hylurgus ligniperda(Fabricius) is native to Europe but has established populations in many countries and regions. H. ligniperda mainly infests Pinus species, and can cause severe weakness and even death of the host through its boring activity;it can also be a vector of various pathogenic fungi. This study was conducted to investigate the environmental variables limiting the distribution of H. ligniperda and the change trend of its suitable areas under climate change.Results: We used a maximum entropy model to predict the potential geographical distribution of H. ligniperda on a global scale under near current and future climatic scenarios using its occurrence data and environmental variables. The result shows that the areas surrounding the Mediterranean region, the eastern coastal areas of Asia, and the southeastern part of Oceania are highly suitable for H. ligniperda. The environmental variables with the greatest effect on the distribution of H. ligniperda were determined using the jackknife method and Pearson’s correlation analysis and included the monthly average maximum temperature in April, precipitation of driest quarter, the monthly average minimum temperature in December, precipitation of coldest quarter, mean temperature of driest quarter and mean diurnal range.Conclusions: Excessive precipitation in winter and low temperatures in spring had a great effect on the distribution of H. ligniperda. The potential geographical distribution of H. ligniperda was predicted to change under future climatic conditions compared with near current climate conditions. Highly suitable areas, moderately suitable areas and low suitable areas were predicted to increase by 59.99%, 44.43% and 22.92%, respectively, under the2081–2100 ssp245 scenario.
基金This project was sponsored by the Joint Earthquake Science Foundation,China.Contribution No.99AC1021,Institute of Geophysics,CSB,China
文摘Five principles and methods are proposed for estimating the maximum potential earthquakesin low seismicity areas,and their applicabilities are discussed,taking Sichuan basin as asample area.The proposed principles and methods are not only on the grounds of thegeological tectonics but also considered fully the mutual complementation between geologicaland seismological methods.They will be helpful to the study of engineering seismology andthe assessment of designing ground motion parameters in low seismicity areas.
基金funded by the sub-project of National Science and Technology Support Program(2006BAC13B01-0102)the State Key Project of National 10th Five-year Programentitled"Active fault exploration and seismic risk assessment of Lanzhou city"(Grant No.1-4-28)Contribution No.LZ2008020 for Lanzhou Institute of Seismology,CEA
文摘The Zhuanglang river and Baiyin Baiyangshu river faults are late Quaternary faults near Lanzhou city, which pose a threat to the safety of the city. However, the cause of medium- strong earthquakes along the fault is rather complicated and even uncertain. It is important for us how to assess the magnitudes of maximum potential earthquakes and the seismic risk of the faults. The authors make reference to the method that Wen Xueze, et ai. (2007) developed to assess the magnitudes of maximum potential earthquakes in sub-areas of moderately and weakly active faults in the eastern Chinese Mainland, and brought forward an empirical relationship between the maximum magnitudes Mmax and the at/b values of the sub-areas' frequency- magnitude relationships in the Lanzhou area. By using this empirical relationship, the authors have estimated the upper-limits Mu of the Zhuanglang river and Baiyin Baiyangshu river active faults near Lanzhou city as Ms6.9 and 6.3, respectively. In addition, they have assessed the average interval recurrence time and the probabilities of destructive earthquakes on the faults.