期刊文献+
共找到761篇文章
< 1 2 39 >
每页显示 20 50 100
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
1
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Variable Parameter Nonlinear Control for Maximum Power Point Tracking Considering Mitigation of Drive-train Load 被引量:2
2
作者 Zaiyu Chen Minghui Yin +3 位作者 Lianjun Zhou Yaping Xia Jiankun Liu Yun Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期252-259,共8页
Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking... Since mechanical loads exert a significant influence on the life span of wind turbines, the reduction of transient load on drive-train shaft has received more attention when implementing a maximum power point tracking U+0028 MPPT U+0029 controller. Moreover, a trade-off between the efficiency of wind energy extraction and the load level of drive-train shaft becomes a key issue. However, for the existing control strategies based on nonlinear model of wind turbines, the MPPT efficiencies are improved at the cost of the intensive fluctuation of generator torque and significant increase of transient load on drive train shaft. Hence, in this paper, a nonlinear controller with variable parameter is proposed for improving MPPT efficiency and mitigating transient load on drive-train simultaneously. Then, simulations on FAST U+0028 Fatigue, Aerodynamics, Structures, and Turbulence U+0029 code and experiments on the wind turbine simulator U+0028 WTS U+0029 based test bench are presented to verify the efficiency improvement of the proposed control strategy with less cost of drive-train load. © 2017 Chinese Association of Automation. 展开更多
关键词 AERODYNAMICS controllers Economic and social effects maximum power point trackers Wind power Wind turbines
下载PDF
Second-order Sliding Mode Control of DFIG Based Variable Speed Wind Turbine for Maximum Power Point Tracking 被引量:4
3
作者 Xiangjie Liu Chengcheng Wang Yaozhen Han 《自动化学报》 EI CSCD 北大核心 2017年第8期1434-1442,共9页
关键词 风力发电机组 滑模控制器 二阶滑模 变速恒频 最大功率点跟踪 双馈感应发电机 李雅普诺夫函数 发电机转子
下载PDF
Maximum Power Point Tracking Using Fuzzy Logic Controller under Partial Conditions
4
作者 Areen Abdallah Allataifeh Khaled Bataineh Mohammad Al-Khedher 《Smart Grid and Renewable Energy》 2015年第1期1-13,共13页
This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consi... This study proposes a fuzzy system for tracking the maximum power point of a PV system for solar panel. The solar panel and maximum power point tracker have been modeled using MATLAB/Simulink. A simulation model consists of PV panel, boost converter, and maximum power point tack MPPT algorithm is developed. Three different conditions are simulated: 1) Uniform irradiation;2) Sudden changing;3) Partial shading. Results showed that fuzzy controller successfully find MPP for all different weather conditions studied. FLC has excellent ability to track MPP in less than 0.01 second when PV is subjected to sudden changes and partial shading in irradiation. 展开更多
关键词 Fuzzy LOGIC controlLER maximum power point PHOTOVOLTAIC System PARTIAL SHADING
下载PDF
A Fuzzy Logic Controller for Maximum Power Point Tracking with 8-Bit Microcontroller
5
作者 Y.R. Yang 《Journal of Energy and Power Engineering》 2011年第11期1078-1086,共9页
This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C... This paper presents the implementation of maximum power point tracking (MPPT) with fuzzy logic controller. For cost consideration, an inexpensive 8-bit microcontroller, PIC 16F877A, is selected and programmed with C language and integer variables For evaluation, the implemented fuzzy logic controller (FLC) is compared with the MPPT controller of using perturbation and observation (P&O). Both types of MPPT controllers are tested on the same voltage source with a series-connected resistor. Experimental results show that the implemented FLC with appropriate design meets the control requirements of MPPT. The FLC based on linguistic fuzzy rules has more flexibility and intelligence than conventional P&O controller, but the FLC spends more RAM and ROM spaces than the P&O tracker does. 展开更多
关键词 Fuzzy logic controllers maximum power point tracking microcontrollers.
下载PDF
Maximum power point tracking of a photovoltaic energy system using neural fuzzy techniques 被引量:1
6
作者 李春华 朱新坚 +1 位作者 隋升 胡万起 《Journal of Shanghai University(English Edition)》 CAS 2009年第1期29-36,共8页
In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of... In order to improve the output efficiency of a photovoltaic (PV) energy system, the real-time maximum power point (MPP) of the PV array should be tracked closely. The non-linear and time-variant characteristics of the photovoltaic array and the non-linear and non-minimum phase characteristics of a boost converter make it difficult to track the MPP as in traditional control strategies. A neural fuzzy controller (NFC) in conjunction with the reasoning capability of fuzzy logical systems and the learning capability of neural networks is proposed to track the MPP in this paper. A gradient estimator based on a radial basis function neural network is developed to provide the reference information to the NFC. With a derived learning algorithm, the parameters of the NFC are updated adaptively. Experimental results show that, compared with the fuzzy logic control algorithm, the proposed control algorithm provides much better tracking performance. 展开更多
关键词 photovoltaic array boost converter maximum power point tracking (MPPT) neural fuzzy controller (NFC) radial basis function neural networks (RBFNN)
下载PDF
Maximum Power Point Tracking With Fractional Order High Pass Filter for Proton Exchange Membrane Fuel Cell
7
作者 Jianxin Liu Tiebiao Zhao YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期70-79,共10页
Proton exchange membrane fuel cell (PEMFC) is widely recognized as a potentially renewable and green energy source based on hydrogen. Maximum power point tracking (MPPT) is one of the most important working conditions... Proton exchange membrane fuel cell (PEMFC) is widely recognized as a potentially renewable and green energy source based on hydrogen. Maximum power point tracking (MPPT) is one of the most important working conditions to be considered. In order to improve the performance such as convergence and robustness under disturbance and uncertainty, a fractional order high pass filter (FOHPF) is applied for the MPPT controller design based on the traditional extremum seeking control (ESC). The controller is designed with integerorder integrator (IO-I) and low pass filter (IO-LPF) together with fractional order high pass filter (FOHPF), by substituting the normal HPF in the original ESC system. With this FOHPF ESC, better convergence and smoother performance are achieved while maintaining the robust specifications. First, tracking stability is discussed under the commensurate-order condition. Then, simulation results are included to validate the proposed new FOHPF ESC scheme under disturbance. Finally, comparison results between FOHPF ESC and the traditional ESC method are also provided. © 2014 Chinese Association of Automation. 展开更多
关键词 Bandpass filters control theory controllers Fuel cells High pass filters Low pass filters maximum power point trackers
下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
8
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 Artificial NEURAL Network Energy Management Fuzzy control Hybrid power Systems maximum power point TRACKER Modeling
下载PDF
Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking
9
作者 Safanah M. Rafaat Rajaa Hussein 《Journal of Power and Energy Engineering》 2018年第1期51-69,共19页
Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of tw... Maximizing the power capture is an important issue to the turbines that are installed in low wind speed area. In this paper, we focused on the modeling and control of variable speed wind turbine that is composed of two-mass drive train, a Squirrel Cage Induction Generator (SCIG), and voltage source converter control by Space Vector Pulse Width Modulation (SPVWM). To achieve Maximum Power Point Tracking (MPPT), the reference speed to the generator is searched via Extremum Seeking Control (ESC). ESC was designed for wind turbine region II operation based on dither-modulation scheme. ESC is a model-free method that has the ability to increase the captured power in real time under turbulent wind without any requirement for wind measurements. The controller is designed in two loops. In the outer loop, ESC is used to set a desired reference speed to PI controller to regulate the speed of the generator and extract the maximum electrical power. The inner control loop is based on Indirect Field Orientation Control (IFOC) to decouple the currents. Finally, Particle Swarm Optimization (PSO) is used to obtain the optimal PI parameters. Simulation and control of the system have been accomplished using MATLAB/Simulink 2014. 展开更多
关键词 Wind Turbine Indirect Field Orientation control (IFOC) maximum power point Tracking (MPPT) Extremum SEEKING control (ESC) Particle SWARM Op-timization (PSO) PI controller
下载PDF
Thermal energy harvesting circuit with maximum power point tracking control for self-powered sensor node applications
10
作者 Eun-Jung YOON Jong-Tae PARK Chong-Gun YU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第2期285-296,共12页
We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking(MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct curr... We present a simple implementation of a thermal energy harvesting circuit with the maximum power point tracking(MPPT) control for self-powered miniature-sized sensor nodes. Complex start-up circuitry and direct current to direct current(DC-DC) boost converters are not required, because the output voltage of targeted thermoelectric generator(TEG) devices is high enough to drive the load applications directly. The circuit operates in the active/asleep mode to overcome the power mismatch between TEG devices and load applications. The proposed circuit was implemented using a 0.35-μm complementary metal-oxide semiconductor(CMOS) process. Experimental results confirmed correct circuit operation and demonstrated the performance of the MPPT scheme. The circuit achieved a peak power efficiency of 95.5% and an MPPT accuracy of higher than 99%. 展开更多
关键词 Thermoelectric energy Energy harvesting maximum power point tracking (MPPT) control Self-powered system Sensor node
原文传递
Improved sliding-mode control for tracking global maximum power of triple-series-parallel ladder photovoltaic arrays under uneven shadowing
11
作者 Rama Koteswara Rao Alla Kandipati Rajani Ravindranath Tagore Yadlapalli 《Clean Energy》 EI CSCD 2024年第5期54-72,共19页
This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits ... This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions. 展开更多
关键词 improved sliding-mode control PV array global maximum power point SERIES-PARALLEL boost converter
原文传递
Adaptive perturb and observe maximum power point tracking with current predictive and decoupled power control for gridconnected photovoltaic inverters 被引量:10
12
作者 Yong YANG Huiqing WEN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期422-432,共11页
In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neu... In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neutral-point clamped(NPC) photovoltaic(PV)generation systems. To control the active power and the reactive power independently,the decoupled power control combined with a space vector modulation block is adopted for three-phase NPC inverters in PV generation systems.To balance the neutral-point voltage of the three-phase NPC grid-connected inverter, a proportional and integral control is used by adj usting the dwell time of small voltage vectors. A three-phase NPC inverter rated at 12 kVA was established. The performance of the proposed method was tested and compared with the fixed perturbation MPPT algorithm under different conditions. Experimental results confirm the feasibility and advantages of the proposed method. 展开更多
关键词 maximum power point tracking(MPPT) Perturb and observe(P&O) CURRENT PREDICTIVE controlDecoupled power control Three-phase neutral-point CLAMPED inverter
原文传递
Analysis and research on Maximum Power Point Tracking of Photovoltaic Array with Fuzzy Logic Control and Three-point Weight Comparison Method 被引量:4
13
作者 LIN Kuang-Jang LIN Chii-Ruey 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第8期2183-2189,共7页
The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by ... The Photovoltaic Array has a best optimal operating point where the array operating can obtain the maximum power.However, the optimal operating point can be compromised by the strength of solar radiation,angle,and by the change of environment and load.Due to the constant changes in these conditions,it has become very difficult to locate the optimal operating point by following a mathematical model.Therefore,this study will focus mostly on the application of Fuzzy Logic Control theory and Three-point Weight Comparison Method in effort to locate the optimal operating point of solar panel and achieve maximum efficiency in power generation. The Three-point Weight Comparison Method is the comparison between the characteristic curves of the voltage of photovoltaic array and output power;it is a rather simple way to track the maximum power.The Fuzzy Logic Control,on the other hand,can be used to solve problems that cannot be effectively dealt with by calculation rules,such as concepts,contemplation, deductive reasoning,and identification.Therefore,this paper uses these two kinds of methods to make simulation successively. The simulation results show that,the Three-point Comparison Method is more effective under the environment with more frequent change of solar radiation;however,the Fuzzy Logic Control has better tacking efficiency under the environment with violent change of solar radiation. 展开更多
关键词 PHOTOVOLTAIC Array maximum power point Tracking(MPPT) Fuzzy LOGIC control Three-point WEIGHT Comparison Method
原文传递
A PV powered shunt active power filter for power quality improvement 被引量:3
14
作者 Ayoub Benzahia Rabhi Boualaga +3 位作者 Ammar Moussi Laeid Zellouma Memich Meriem Bouziane Chaima 《Global Energy Interconnection》 2019年第2期143-149,共7页
This paper deals with power quality improvement using a three-phase active power filter(APF) connected to a PV power system. A direct power control(DPC) approach is proposed to eliminate harmonic current caused by any... This paper deals with power quality improvement using a three-phase active power filter(APF) connected to a PV power system. A direct power control(DPC) approach is proposed to eliminate harmonic current caused by any nonlinear loads and at the same time guarantees the delivery of a part of the load request from the same PV source. A boost converter is used for maximum power point(MPP) tracking purposes under various climate conditions through a fuzzy logic technique. The suggested study is tested under a MATLAB/Simulink environment. The obtained results depict the efficacy of the proposed procedures to meet the IEEE 519-1992 standard recommendation on harmonic levels. 展开更多
关键词 Active power Filter(APF) PHOTOVOLTAIC (PV) Direct power control (DPC) maximum power point Tracking (MPPT)
下载PDF
Improved MPPT Control Based on the Reduction of Tracking Range 被引量:11
15
作者 YIN Minghui ZHANG Xiaolian YE Xing ZOU Yun 《中国电机工程学报》 EI CSCD 北大核心 2012年第27期I0002-I0002,178,共1页
考虑到基于转矩调整的改进方法存在难以获取最优调整状态的问题,该文针对传统功率曲线法提出收缩风机转速的跟踪区间、减小跟踪路程的改进思路,以优化风机最大功率点跟踪的性能。在此基础上,设计出根据平均风速,周期性的调整起始发... 考虑到基于转矩调整的改进方法存在难以获取最优调整状态的问题,该文针对传统功率曲线法提出收缩风机转速的跟踪区间、减小跟踪路程的改进思路,以优化风机最大功率点跟踪的性能。在此基础上,设计出根据平均风速,周期性的调整起始发电转速的改进功率曲线法。其设计机理在于风速平均值恰好反映了风速及风能量集中分布的区间。因此,最优转速跟踪区间与平均风速存在数量上的直接关系而变得容易预估,且无需迭代搜索。与目前基于调整转矩的改进方法相比,该文所提方法不仅提高了风能捕获效率,且简单易行。最后,通过对模拟风速序列的仿真计算与比较分析,验证了该方法的有效性和先进性。 展开更多
关键词 最大功率点跟踪 MPPT 控制策略 风力涡轮机 电机转矩 功率曲线 PSF 信号反馈
下载PDF
An Adaptive Single Neural Control for Variable Step-Size P&O MPPT of Marine Current Turbine System 被引量:1
16
作者 LI Ming-zhu WANG Tian-zhen +1 位作者 ZHOU Fu-na SHI Ming 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期750-758,共9页
Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbi... Marine current energy has been increasingly used because of its predictable higher power potential.Owing to the external disturbances of various flow velocity and the high nonlinear effects on the marine current turbine(MCT)system,the nonlinear controllers which rely on precise mathematical models show poor performance under a high level of parameters’uncertainties.This paper proposes an adaptive single neural control(ASNC)strategy for variable step-size perturb and observe(P&O)maximum power point tracking(MPPT)control.Firstly,to automatically update the neuron weights of SNC for the nonlinear systems,an adaptive mechanism is proposed to adaptively adjust the weighting and learning coefficients.Secondly,aiming to generate the exact reference speed for ASNC to extract the maximum power,a variable step-size law based on speed increment is designed to strike a balance between tracking speed and accuracy of P&O MPPT.The robust stability of the MCT control system is guaranteed by the Lyapunov theorem.Comparative simulation results show that this strategy has favorable adaptive performance under variable velocity conditions,and the MCT system operates at maximum power point steadily. 展开更多
关键词 marine current turbine system perturb and observe single neural control adaptive mechanism maximum power point tracking
下载PDF
OUTPUT MAXIMIZATION CONTROL FOR VSCF WIND ENERGY CONVERSION SYSTEM USING EXTREMUM CONTROL STRATEGY
17
作者 付大丰 马运东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期185-192,共8页
The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablesp... The energy conversion optimization control strategy is presented for a family of horizontal-axis variablespeed fixed-pitch wind energy conversion systems,working in the partial load region.The system uses a variablespeed wind turbine(VSWT)driving a squirrel-cage induction generator(SCIG)connected to a grid.A new maximum power point tracking(MPPT)approach is proposed based on the extremum seeking control principles under the assumption that the wind turbine model and its parameters are poorly known.The aim is to drive the average position of the operation point close to optimality.Here the wind turbulence is used as search disturbance instead of inducing new sinusoidal search signals.The discrete Fourier transform(DFT)process of some available measures estimates the distance of operation point to optimality.The effectiveness of the proposed MPPT approach is validated under different operation conditions by numerical simulations in MATLAB/SIMULINK.The simulation results prove that the new approach can effectively suppress the vibration of system and enhance the dynamic performance of system. 展开更多
关键词 wind energy conversion systems maximum power point tracking extremum control strategy discrete Fourier transform
下载PDF
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
18
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
OBSO Based Fractional PID for MPPT-Pitch Control of Wind Turbine Systems
19
作者 Ibrahim M.Mehedi Ubaid M.Al-Saggaf +3 位作者 Mahendiran T.Vellingiri Ahmad H.Milyani Nordin Bin Saad Nor Zaihar Bin Yahaya 《Computers, Materials & Continua》 SCIE EI 2022年第5期4001-4017,共17页
In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist t... In recent times,wind energy receives maximum attention and has become a significant green energy source globally.The wind turbine(WT)entered into several domains such as power electronics that are employed to assist the connection process of a wind energy system and grid.The turbulent characteristics of wind profile along with uncertainty in the design of WT make it highly challenging for prolific power extraction.The pitch control angle is employed to effectively operate the WT at the above nominal wind speed.Besides,the pitch controller needs to be intelligent for the extraction of sustainable secure energy and keep WTs in a safe operating region.To achieve this,proportional–integral–derivative(PID)controllers are widely used and the choice of optimal parameters in the PID controllers needs to be properly selected.With this motivation,this paper designs an oppositional brain storm optimization(OBSO)based fractional order PID(FOPID)design for sustainable and secure energy in WT systems.The proposed model aims to effectually extract the maximum power point(MPPT)in the low range of weather conditions and save the WT in high wind regions by the use of pitch control.The OBSO algorithm is derived from the integration of oppositional based learning(OBL)concept with the traditional BSO algorithm in order to improve the convergence rate,which is then applied to effectively choose the parameters involved in the FOPID controller.The performance of the presented model is validated on the pitch control of a 5 MW WT and the results are examined under different dimensions.The simulation outcomes ensured the promising characteristics of the proposed model over the other methods. 展开更多
关键词 Wind turbine wind energy pitch control brain storm optimization PID controller maximum power point
下载PDF
Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG
20
作者 Ali EL YAAKOUBI Kamal ATTARI +1 位作者 Adel ASSELMAN Abdelouahed DJEBLI 《Frontiers in Energy》 SCIE CSCD 2019年第4期742-756,共15页
Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In thi... Under the trends to using renewable energy sources as alternatives to the traditional ones,it is important to contribute to the fast growing development of these sources by using powerful soft computing methods.In this context,this paper introduces a novel structure to optimize and control the energy produced from a variable speed wind turbine which is based on a squirrel cage induction generator(SCIG)and connected to the grid.The optimization strategy of the harvested power from the wind is realized by a maximum power point tracking(MPPT)algorithm based on fuzzy logic,and the control strategy of the generator is implemented by means of an internal model(IM)controller.Three IM controllers are incorporated in the vector control technique,as an alternative to the proportional integral(PI)controller,to implement the proposed optimization strategy.The MPPT in conjunction with the IM controller is proposed as an alternative to the traditional tip speed ratio(TSR)technique,to avoid any disturbance such as wind speed measurement and wind turbine(WT)characteristic uncertainties.Based on the simulation results of a six KW-WECS model in Matlab/Simulink,the presented control system topology is reliable and keeps the system operation around the desired response. 展开更多
关键词 power optimization wind energy conversion system maximum power point tracking(MPPT) fuzzy logic internal model(IM)controller
原文传递
上一页 1 2 39 下一页 到第
使用帮助 返回顶部