The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influ...The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established und...In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.展开更多
Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design re...Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.展开更多
By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the ...By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.展开更多
A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common ...A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.展开更多
Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum ...Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.展开更多
We conducted a long-term monitoring experiment on the Lutuanxilu Bridge located in Changping District of Beijing, employing our recently developed real-time bridge monitoring system based on the Guralp CMG-6TD broadba...We conducted a long-term monitoring experiment on the Lutuanxilu Bridge located in Changping District of Beijing, employing our recently developed real-time bridge monitoring system based on the Guralp CMG-6TD broadband seismometer. We identified the modal parameters with the stochastic subspace identification( SSI) algorithm,and continuously monitored the temporal velocity variation with coda wave interferometry.The results show that:( 1) the highly sensitive Guralp CMG-6TD broadband seismometer,which records the three-component vibration signal within broad frequency range,is well suited for long-term bridge health monitoring.( 2) With the continuous vibration signal from ambient excitation,the stochastic subspace algorithm can robustly identify the low-order modal parameters and the coda wave interferometry can accurately monitor the tiny velocity variation.( 3) The elastic modulus of bridge materials changes significantly associated with varying temperature,leading to diurnal velocity variation with amplitude of approximately 1%. The velocity variation shows strong negative correlation with temperature fluctuation. Meanwhile,the modal frequencies remain quite stable,suggesting that the velocity variation may be a more sensitive quantitative damage index.( 4) While the modal frequencies reflect the integrated health status of the bridge,the velocity variation can be utilized to monitor the local elastic modulus. Therefore,it is crucial for bridge health monitoring to continuously monitor the two key damage indexes under ambient excitation.展开更多
The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the e...The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ(NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin(dynamic disorder of dimethylammonium(DMA+) cations)–phonon coupling(PS) and of the energy fluctuation(EF), is fitted to the observed data for the wavenumber and FWHM of the ρ(NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies(IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.展开更多
This work presents the hydrologic estimations of the hydraulic underground arched culvert channel (UACC) in Sabinal Basin, Chiapas, México and the hydrological problems associated with it, such as the erosion phe...This work presents the hydrologic estimations of the hydraulic underground arched culvert channel (UACC) in Sabinal Basin, Chiapas, México and the hydrological problems associated with it, such as the erosion phenomenon and abrasion cavity formation in it. On the other hand, the maximum flows that the UACC could transport were analyzed, concluding that it no longer has the hydraulic capacity to transport the flow rate associated to return periods equal to or greater than five years and that maximum permissible velocity UACC’s bottom is 3 m/s.展开更多
Ocean currents are a key element in ocean processes and in meteorology,affecting material transport and modulating climate change patterns.The Doppler frequency shift information of the synthetic aperture radar(SAR)ec...Ocean currents are a key element in ocean processes and in meteorology,affecting material transport and modulating climate change patterns.The Doppler frequency shift information of the synthetic aperture radar(SAR)echo signal can reflect the dynamic characteristics of the sea surface,and has become an essential sea surface dynamic remote sensing parameter.Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current.However,the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking.In this study,we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current.Global ocean multi observation(MOB)products and global surface Lagrangian drifter(GLD)data are used to validate the Kuroshio flow retrieved from the SAR data.Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s.The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution,with the 90%confidence interval concentrated between–0.1 m/s and 0.1 m/s.Comparative analysis of SAR ocean current and GLD products,the correlation coefficient is 0.803,which shows to be significant at a confidence level of 99%.The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current,and has the capability to monitor current velocity over a wide range of values.展开更多
Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vi...Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vibration and frequency were summarized andanalyzed. It is thought that the effect of the number of freedom face and burden direction onblasting vibration should be considered during blasting design. Based on the relevant researchresults and the regression results of these data, a formula to calculate under water blastingfrequency was put forward.展开更多
Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show tha...Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.展开更多
The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / G...The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.展开更多
The up-band signal of the second ultrasonic beam contained reversecomPOnent or blooll now. Using double ultrasonic beam,bidirectional Doppler ultrasound can avoid the use or two kinds or band filters and be simplified...The up-band signal of the second ultrasonic beam contained reversecomPOnent or blooll now. Using double ultrasonic beam,bidirectional Doppler ultrasound can avoid the use or two kinds or band filters and be simplified into a singlekind or band filter. In order to make the output more accurate,the inrluence of angle effect can be overcome by the table-out method and another special methodcalled cose recorrection.The experiment result is that when the deviation angle varies from-- 18' to +20' the relative error or output is less than 5%.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wa...Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.展开更多
The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the s...The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the samples of four drilling cores near the No.4 Bridge (to be built), we can find that the time range of paleo-valley is dated in the LGM at a depth of-60 m to -90 m near Nanjing. It is also indicated that the deep incised-valley channel was narrow and the river flowed swiftly. The ancient Yangtze River deep channel presented partially and deeply incised features near the No.1 Bridge. According to previous publications, much research has been done on the main paleo-channel of the Yangtze River, but few results have been achieved on discharge estimation. In this paper, the incipient velocity and average veIocity of the LGM was calculated with Vc=4.60d^1/3h^1/6, Vc=1.281g( 13.15. h /d95) √gd, V≈6.5u*|h/d90|^1/6 etc., in terms of the river shape, sedimentary grain size and sequences near the No.3 and No.1 bridges. Moreover, the discharge in Nanjing reach of the Yangtze River during the LGM has been estimated to be around 12,000-16,000 m^3/s according to the relationship of discharge, velocity of flow and cross-section.展开更多
In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the...In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the sound velocity, a compressional wave velocity is measured at frequencies of 25-250 kHz on marine sediment samples collected from the Bohai Sea and the Yellow Sea in laboratory, together with the geotechnical parameters of sediments. The results indicate that the sound velocity ranges from 1.232 to 1.721 km/s for the collected sediment samples with a significant dispersion within the series measuring frequency. Poorly sorted sediments are highly dispersive nearly with a positive linear relationship. The porosity shows a better negative logarithmic correlation with the sound velocity compared with other geotechnical parameters. Generally, the sound velocity increases with the increasing of the average particle size, sand content, wet and dry bulk densities, and decreasing of the clay content, and water content. An important point should be demonstrated that the higher correlation can be obtained when the measuring frequency is low within the frequency ranges from 25 to 250 kHz since the inhomogeneity of sediment properties has a more remarkably influence on the laboratory sound velocity measurement at the high frequency.展开更多
基金supported by the National Natural Science Foundation of China (Grants No.50879019,50909036,and 50879020)the Research Fund for the Doctoral Program of Higher Education (Grants No.200802940001 and 200802941028)+3 种基金the Fundamental Research Funds for the Central Universities (Grants No.2010B02214,2009B08014,and 2010B14214)the Natural Science Foundation of Hohai University(Grant No. 2008426411)the Jiangsu "333" Program for High Level Talents (Grant No. 2017-B08038)the National Undergraduate Innovation Training Plan (Grant No.G20101106)
文摘The velocity dip phenomenon may occur in a part of or in the whole flow field of open channel flows due to the secondary flow effect. Based on rectangular flume experiments and the laser Doppler velocimetry, the influence of the distance to the sidewall and the aspect ratio on the velocity dip is investigated. Through application of statistical methods to the experimental results, it is proposed that the flow field may be divided into two regions, the relatively strong sidewall region and the relatively weak sidewall region. In the former region, the distance to the sidewall greatly affects the location of maximum velocity, and, in the latter region, both the distance to the sidewall and the aspect ratio influence the location of the maximum velocity.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
文摘In this study, a method for determining the intrinsic recombination velocity at the junction of a silicon solar cell is presented. The expression of intrinsic recombination velocity at the junction was established under irradiation in frequency modulation. Based on this expression, an electrical model of the intrinsic recombination velocity at the junction is presented.
基金Financial supports for this research were provided by the National Natural Science Foundation of China(Grants 11372060,11672057 and 11711530018)the 111 Project(Grant B14013)the Program of BK21 Plus.These supports are gratefully acknowledged.
文摘Fiber reinforced composite frame structure is an ideal lightweight and large-span structure in the fields of aerospace,satellite and wind turbine.Natural fundamental frequency is one of key indicators in the design requirement of the composite frame since structural resonance can be effectively avoided with the increase of the fundamental frequency.Inspired by the concept of integrated design optmization of composite frame structures and materials,the design optimization for the maximum structural fundamental frequency of fiber reinforced frame structures is proposed.An optimization model oriented at the maximum structural fundamental frequency under a composite material volume constraint is established.Two kinds of independent design variables are optimized,in which one is variables represented structural topology,the other is variables of continuous fiber winding angles.Sensitivity analysis of the frequency with respect to the two kinds of independent design variables is implemented with the semi-analytical sensitivity method.Some representative examples in the manuscript demonstrate that the integrated design optimization of composite structures can effectively explore coupled effects between structural configurations and material properties to increase the structural fundamental frequency.The proposed integrated optimization model has great potential to improve composite frames structural dynamic performance in aerospace industries.
基金Supported by the Fund of National Defense Industry Innovative Team(231)
文摘By analyzing the signal model of stepped-frequency waveform, a novel method for velocity measurement is proposed. The method is based on Doppler frequency difference which is achieved by using Hough transform. As the estimated velocity is inversely proportional to the frequency step size instead of the carrier frequency of the transmitted signal as the pulse-Doppler (PD) processing, the new algorithm can achieve much wider unambiguous velocity range. Furthermore, non-coherent integration of the sub-pulses with different carrier frequencies can be implemented by Hough trans- form to improve the anti-noise performance. Besides, field experimental results show that the high range resolution profile (HRRP) of a bullet with high speed can be reconstructed correctly without distortion.
基金Supported by the National Basic Research Program of China under Grant No 2011CB301900the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BY2013077
文摘A common base four-finger InOaAs/InP double heterojunction bipolar transistor with 535 OHz fmax by using the 0.5 μm emitter technology is fabricated. Multi-finger design is used to increase the input current. Common base configuration is compared with common emitter configuration, and shows a smaller K factor at high frequency span, indicating a larger breakpoint frequency of maximum stable gain/maximum available gain (MSG/MAG) and thus a higher gain near the cut-off frequency, which is useful in THz amplifier design.
基金Funded by the National Natural Science Foundation of China(No.60974049)the Science and Technology Support Industrial Project of Jiangsu Province(No.BZ2008031,No.BE2008074,and No.BE2009090)+1 种基金the Nantong International Cooperative Project(No.W2009003)the Natural Science Foundation of Nantong University(No.08Z022 and No.08Z025).
文摘Based on the characteristic of AC-excited variable speed constant frequency(VSCF)wind power generation,the vector control technique was applied in a doubly fed induction generator(DFIG).Maximum wind energy or maximum output power point can be tracked by decoupling control of active power and reactive power.The research result shows that the net power of generation system delivered to grid in maximum wind energy tracking mode is not the most.We presented a novel maximum power point tracking(MPPT)control strategy by analyzing the DFIG mathematic model and power relations which delivered the maximum power to the grid.The maximum power point could be tracked automatically without measuring wind speed in the control strategy and the control was independent of optimal turbine power curve,which had excellent dynamic and static performances and robustness.Simulation and experimental results testify the accuracy and validity of the control strategy.
基金sponsored by "Microseismic response characteristic of typical bridges in Beijing under environmental excitations"( ZX20130335)the scientific research foundation of China University of Petroleum-Beijing ( 2462014YJRC045)
文摘We conducted a long-term monitoring experiment on the Lutuanxilu Bridge located in Changping District of Beijing, employing our recently developed real-time bridge monitoring system based on the Guralp CMG-6TD broadband seismometer. We identified the modal parameters with the stochastic subspace identification( SSI) algorithm,and continuously monitored the temporal velocity variation with coda wave interferometry.The results show that:( 1) the highly sensitive Guralp CMG-6TD broadband seismometer,which records the three-component vibration signal within broad frequency range,is well suited for long-term bridge health monitoring.( 2) With the continuous vibration signal from ambient excitation,the stochastic subspace algorithm can robustly identify the low-order modal parameters and the coda wave interferometry can accurately monitor the tiny velocity variation.( 3) The elastic modulus of bridge materials changes significantly associated with varying temperature,leading to diurnal velocity variation with amplitude of approximately 1%. The velocity variation shows strong negative correlation with temperature fluctuation. Meanwhile,the modal frequencies remain quite stable,suggesting that the velocity variation may be a more sensitive quantitative damage index.( 4) While the modal frequencies reflect the integrated health status of the bridge,the velocity variation can be utilized to monitor the local elastic modulus. Therefore,it is crucial for bridge health monitoring to continuously monitor the two key damage indexes under ambient excitation.
文摘The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ(NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin(dynamic disorder of dimethylammonium(DMA+) cations)–phonon coupling(PS) and of the energy fluctuation(EF), is fitted to the observed data for the wavenumber and FWHM of the ρ(NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies(IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.
文摘This work presents the hydrologic estimations of the hydraulic underground arched culvert channel (UACC) in Sabinal Basin, Chiapas, México and the hydrological problems associated with it, such as the erosion phenomenon and abrasion cavity formation in it. On the other hand, the maximum flows that the UACC could transport were analyzed, concluding that it no longer has the hydraulic capacity to transport the flow rate associated to return periods equal to or greater than five years and that maximum permissible velocity UACC’s bottom is 3 m/s.
基金The National Natural Science Foundation of China under contract Nos 42176174 and 41706196the Open Research Fund of the State Key Laboratory of Estuarine and Coastal Research under contract No.SKLECKF202104+3 种基金the Zhejiang Provincial Natural Science Foundation of China under contract No.LY22D010002the National Science Foundation for Post-doctoral Scientists of China under contract No.2020M683258the Chongqing Technology Innovation and Application Development Special Project under contract No.cstc2020jscx-msxm X0193the Sichuan Science and Technology Program under contract No.2018JY0484
文摘Ocean currents are a key element in ocean processes and in meteorology,affecting material transport and modulating climate change patterns.The Doppler frequency shift information of the synthetic aperture radar(SAR)echo signal can reflect the dynamic characteristics of the sea surface,and has become an essential sea surface dynamic remote sensing parameter.Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current.However,the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking.In this study,we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current.Global ocean multi observation(MOB)products and global surface Lagrangian drifter(GLD)data are used to validate the Kuroshio flow retrieved from the SAR data.Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s.The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution,with the 90%confidence interval concentrated between–0.1 m/s and 0.1 m/s.Comparative analysis of SAR ocean current and GLD products,the correlation coefficient is 0.803,which shows to be significant at a confidence level of 99%.The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current,and has the capability to monitor current velocity over a wide range of values.
文摘Based on the measuring data of underwater blasting vibration and theregression analysis results of these data, two formulae usually used of blasting vibration velocitywere compared. Factors that can affect blasting vibration and frequency were summarized andanalyzed. It is thought that the effect of the number of freedom face and burden direction onblasting vibration should be considered during blasting design. Based on the relevant researchresults and the regression results of these data, a formula to calculate under water blastingfrequency was put forward.
基金National Key Research and Development Program of China(2018YFC1506402)National Natural Scientific Foundations of China(41575061,41775061)JSPS KAKENHI(JP18H01283)。
文摘Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones(TCs)are investigated for the TCs over the western North Pacific during the period 2008-2017.The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin,indicating that accurate track forecasts are beneficial for TC intensity forecasts.With respect to other TCs that are not affected by the land(i.e.,Ocean-TCs),the timings of their lifetime maximum intensities are determined by multiple oceanic factors.In particular,interactions between TCs and cold-core eddies occur in a large proportion(nearly 60%)of Ocean-TCs at or shortly after the times of their lifetime maximum intensities,especially in strong TCs(categories 4 and 5),suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills.In addition,unfavorable oceanic heat content conditions become common as the latitude increases over 25°N,influencing half of the Ocean-TCs.Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin,especially in moderate and weak TCs.In contrast,neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.
文摘The semiclassical transport equations are used to study the high frequency performance of AlGaAs / GaAs HBTs. Electron velocity overshoot effect and its influence on the cut off frequency characteristics of AlGaAs / GaAs HBTs with different collector design parameters are analyzed and discussed.
文摘The up-band signal of the second ultrasonic beam contained reversecomPOnent or blooll now. Using double ultrasonic beam,bidirectional Doppler ultrasound can avoid the use or two kinds or band filters and be simplified into a singlekind or band filter. In order to make the output more accurate,the inrluence of angle effect can be overcome by the table-out method and another special methodcalled cose recorrection.The experiment result is that when the deviation angle varies from-- 18' to +20' the relative error or output is less than 5%.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
文摘Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.
基金National Basic Research Program of China, No.2003CB415201-8 National Natural Science Foundation of China. No.40871010 Doctorate Foundation of Linyi Normal University, No.BS08021
文摘The stratigraphical cross-sections of the Yangtze River incised-valley near the No.l, No.3 and No.4 Nanjing Yangtze River bridges were established with respective bore date and documents. By ^14C age analysis of the samples of four drilling cores near the No.4 Bridge (to be built), we can find that the time range of paleo-valley is dated in the LGM at a depth of-60 m to -90 m near Nanjing. It is also indicated that the deep incised-valley channel was narrow and the river flowed swiftly. The ancient Yangtze River deep channel presented partially and deeply incised features near the No.1 Bridge. According to previous publications, much research has been done on the main paleo-channel of the Yangtze River, but few results have been achieved on discharge estimation. In this paper, the incipient velocity and average veIocity of the LGM was calculated with Vc=4.60d^1/3h^1/6, Vc=1.281g( 13.15. h /d95) √gd, V≈6.5u*|h/d90|^1/6 etc., in terms of the river shape, sedimentary grain size and sequences near the No.3 and No.1 bridges. Moreover, the discharge in Nanjing reach of the Yangtze River during the LGM has been estimated to be around 12,000-16,000 m^3/s according to the relationship of discharge, velocity of flow and cross-section.
基金The National Natural Science Foundation of China under contract Nos 41106061,41506077,41330965 and 41402253the Specialized Research Fund of First Insititute of Oceanography under contract No.GY0215G06the Public Science and Technology Research Funds Projects of Ocean of State Oceanic Administration under contract No.201405032
文摘In order to investigate the correlation between a sound velocity and sediment bulk properties and explore the influence of frequency dependence of the sound velocity on the prediction of the sediment properties by the sound velocity, a compressional wave velocity is measured at frequencies of 25-250 kHz on marine sediment samples collected from the Bohai Sea and the Yellow Sea in laboratory, together with the geotechnical parameters of sediments. The results indicate that the sound velocity ranges from 1.232 to 1.721 km/s for the collected sediment samples with a significant dispersion within the series measuring frequency. Poorly sorted sediments are highly dispersive nearly with a positive linear relationship. The porosity shows a better negative logarithmic correlation with the sound velocity compared with other geotechnical parameters. Generally, the sound velocity increases with the increasing of the average particle size, sand content, wet and dry bulk densities, and decreasing of the clay content, and water content. An important point should be demonstrated that the higher correlation can be obtained when the measuring frequency is low within the frequency ranges from 25 to 250 kHz since the inhomogeneity of sediment properties has a more remarkably influence on the laboratory sound velocity measurement at the high frequency.