When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer...When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.展开更多
According to performance analysis of a three-phase grid-connected inverter mathematical model of a directly-driven wind turbine with a permanent magnet synchronous generator (D-PMSG) under unbalanced network voltage c...According to performance analysis of a three-phase grid-connected inverter mathematical model of a directly-driven wind turbine with a permanent magnet synchronous generator (D-PMSG) under unbalanced network voltage conditions, a dual current-loop control strategy (DCC) oriented on positive voltage and negative current is proposed to inhibit the DC voltage fluctuation. Meanwhile, a notch filter is introduced into the conventional control strategy of a phase-locked loop to complete the low voltage ride through (LVRT) ability of the wind generator. A 1.5-MW D-PMSG with a back-to-back IGBT frequency converter was simulated in the PSCAD/EMTDC environment, and simulation results showed that: the maximum wind power tracking was achieved in this system and the proposed DCC strategy could successfully inhibit the rising aging of DC voltage and enhance the ride-through capability of D-PMSG wind generation system under unbalanced network voltage conditions.展开更多
基金supported partially by the National Natural Science Foundation of China under Grant 61503348the Hubei Provincial Natural Science Foundation of China under Grant 2015CFA010the 111 project under Grant B17040
文摘When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation.
文摘According to performance analysis of a three-phase grid-connected inverter mathematical model of a directly-driven wind turbine with a permanent magnet synchronous generator (D-PMSG) under unbalanced network voltage conditions, a dual current-loop control strategy (DCC) oriented on positive voltage and negative current is proposed to inhibit the DC voltage fluctuation. Meanwhile, a notch filter is introduced into the conventional control strategy of a phase-locked loop to complete the low voltage ride through (LVRT) ability of the wind generator. A 1.5-MW D-PMSG with a back-to-back IGBT frequency converter was simulated in the PSCAD/EMTDC environment, and simulation results showed that: the maximum wind power tracking was achieved in this system and the proposed DCC strategy could successfully inhibit the rising aging of DC voltage and enhance the ride-through capability of D-PMSG wind generation system under unbalanced network voltage conditions.