In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
Shannon observed the relation between information entropy and Maxwell demon experiment to come up with information entropy formula. After that, Shannon's entropy formula is widely used to measure information leakage ...Shannon observed the relation between information entropy and Maxwell demon experiment to come up with information entropy formula. After that, Shannon's entropy formula is widely used to measure information leakage in imperative programs. But in the present work, our aim is to go in a reverse direction and try to find possible Maxwell's demon experimental setup for contemporary practical imperative programs in which variations of Shannon's entropy formula has been applied to measure the information leakage. To establish the relation between the second principle of thermodynamics and quantitative analysis of information leakage, present work models contemporary variations of imperative programs in terms of Maxwell's demon experimental setup. In the present work five contemporary variations of imperative program related to information quantification are identified. They are: (i) information leakage in imperative program, (ii) imperative multi- threaded program, (iii) point to point leakage in the imperative program, (iv) imperative program with infinite observation, and (v) imperative program in the SOA-based environment. For these variations, minimal work required by an attacker to gain the secret is also calculated using historical Maxwell's demon experiment. To model the experimental setup of Maxwell's demon, non-interference security policy is used. In the present work, imperative programs with one-bit secret information have been considered to avoid the complexity. The findings of the present work from the history of physics can be utilized in many areas related to information flow of physical computing, nano-computing, quantum computing, biological computing, energy dissipation in computing, and computing power analysis.展开更多
The purpose of this paper is to establish a connection between Maxwell’s equations, Newton’s laws, and the special theory of relativity. This is done with a derivation that begins with Newton’s verbal enunciation o...The purpose of this paper is to establish a connection between Maxwell’s equations, Newton’s laws, and the special theory of relativity. This is done with a derivation that begins with Newton’s verbal enunciation of his first two laws. Derived equations are required to be covariant, and a simplicity criterion requires that the four-vector force on a charged particle be linearly related to the four-vector velocity. The connecting tensor has derivable symmetry properties and contains the electric and magnetic field vectors. The Lorentz force law emerges, and Maxwell’s equations for free space emerge with the assumption that the tensor and its dual must both satisfy first-order partial differential equations. The inhomogeneous extension yields a charge density and a current density as being the source of the field, and yields the law of conservation of charge. Newton’s third law is reinterpreted as a reciprocity statement, which requires that the charge in the source term can be taken as the same physical entity as that of the test particle and that both can be assigned the same units. Requiring covariance under either spatial inversions or time reversals precludes magnetic charge being a source of electromagnetic fields that exert forces on electric charges.展开更多
The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the pho...The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the photon rest mass pays attention to theoretical physi-cists. Many experimental works show that the photon rest mass is non zero. This problem can be solved using generalized potential dependent special relativity, which has been de-rived using simple arguments, and Maxwell’s equations, besides the conventional Einstein energy-momentum relation. The results obtained show that the rest mass of photons and elementary particles are strongly dependent on the vacuum energy and a universal con-stant. This result conforms with the models that predict time decaying vacuum energy as-sociated with production of smaller rest mass particles followed by larger masses. The two potential dependent mass expressions conform with the cosmological models that suggest the photon is generated first by assuming the universe consisting of total constant vacuum with decaying cosmological part and mass generating part. Using Maxwell’s equations, beside plank and De Broglie hypothesis together with special relativity energy-momentum relation the photon rest mass is estimated. It was shown that the photon rest mass is ex-tremely small compared to the electron mass.展开更多
The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,howeve...The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.展开更多
In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MED...In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.展开更多
An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-...An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.展开更多
Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed b...Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed by six non-dimensional parameters: two thermoelastic couplingconstants, one chirality parameter, the ratio between extensional and torsional moduli, the Fouriernumber, and the dimensionless thermal relaxation. The behavior of the solutions is discussedfrom two perspectives with an asymptotic-numerical approach: (1) the effect of thermal relaxationon the elastic wave celerities, and (2) the effect of thermoelastic coupling on the thermal wavecelerities. With small wavenumbers, the adiabatic solution for Fourier helical strands is recovered.However, with large wavenumbers, the solutions behave differently depending on the thermalrelaxation and chirality. Due to thermoelastic coupling, the thermal wave celerity deviates from theclassical result of the speed of second sound.展开更多
We report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates.A...We report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates.A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.展开更多
Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhed...Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.展开更多
Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigrou...Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigroups.In this paper,Green's relations and generalized Green's relations on GV-semigroups are considered by the structure of GV-semigroups.D=j and D C D* on GV-semigroups will be proved.展开更多
In order to study rpp semigroups, in particular, some special cases, several facts on (l)-Green’s relations and strongly rpp semigroups are given as some remarks.
At present China-U.S.trade relations are in a state of confusion.Although both countries have gained tremendous benefits from the bilateral trade relationship,some Americans have intentionally distorted some basic fac...At present China-U.S.trade relations are in a state of confusion.Although both countries have gained tremendous benefits from the bilateral trade relationship,some Americans have intentionally distorted some basic facts regarding China-U.S.trade relations. Based on an analysis of some official and nonofficial research reports published in the United States,this article holds that the China-U.S.trade imbalance is the symptom of a bigger issue stemming from the contradiction between the United States as the world's sole superpower and China as an emerging power.Economic globalisation came about due to the needs of western developed countries represented by the United States to boost economic development.Only by seizing the opportunities of economic globalisation, has China gained strong economic growth. Such a development is changing the world political,economic,military and cultural landscape that have been shaped since the post-cold-war era,and has to some extent raised doubt or suspicion on the part of the United States and its western allies.This is a manifestation of how unprepared some people in the United States and other western countries are in the face of China's rapid development and rising status.So,their immediate reaction has been to seek protection for themselves,and try their utmost to prevent China's rapid growth from impacting on the international framework and their vested interests.展开更多
A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivec...A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.展开更多
According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxil...According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxiliary” magnetic field intensity H is indeed current density of magnetic dipoles. The developed approach to magnetic field can explain a wealth of discovered phenomena in Cosmic Magnetism: a dark magnetic field, the large-scale structure of the Milky Way’s magnetic field, and other magnetic phenomena which are only partly related to objects visible in other spectral ranges.展开更多
China is in Africa in a vigorous way,and doing business in several countries like Sudan,Congo DRC,Angola,South Africa,and Nigeria.In the short term,the relationship may appear to be mutually beneficial.This paper seek...China is in Africa in a vigorous way,and doing business in several countries like Sudan,Congo DRC,Angola,South Africa,and Nigeria.In the short term,the relationship may appear to be mutually beneficial.This paper seeks to address the issue of Africa's perspectives on China-Africa Relations and the FOCAC and examine the concept of strategic partnerships,determine the state of China-Africa relations,examines FOCAC and draw conclusion as well as recommendation on possible ways and issues for future engageme...展开更多
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless...Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless memory(time)number θ is introduced.The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0.The complex dispersion equation is numerically solved to investigate the dispersion relation.The influences of θ and water depth on the dispersion characteristics and wave decay are discussed.It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.展开更多
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
文摘Shannon observed the relation between information entropy and Maxwell demon experiment to come up with information entropy formula. After that, Shannon's entropy formula is widely used to measure information leakage in imperative programs. But in the present work, our aim is to go in a reverse direction and try to find possible Maxwell's demon experimental setup for contemporary practical imperative programs in which variations of Shannon's entropy formula has been applied to measure the information leakage. To establish the relation between the second principle of thermodynamics and quantitative analysis of information leakage, present work models contemporary variations of imperative programs in terms of Maxwell's demon experimental setup. In the present work five contemporary variations of imperative program related to information quantification are identified. They are: (i) information leakage in imperative program, (ii) imperative multi- threaded program, (iii) point to point leakage in the imperative program, (iv) imperative program with infinite observation, and (v) imperative program in the SOA-based environment. For these variations, minimal work required by an attacker to gain the secret is also calculated using historical Maxwell's demon experiment. To model the experimental setup of Maxwell's demon, non-interference security policy is used. In the present work, imperative programs with one-bit secret information have been considered to avoid the complexity. The findings of the present work from the history of physics can be utilized in many areas related to information flow of physical computing, nano-computing, quantum computing, biological computing, energy dissipation in computing, and computing power analysis.
文摘The purpose of this paper is to establish a connection between Maxwell’s equations, Newton’s laws, and the special theory of relativity. This is done with a derivation that begins with Newton’s verbal enunciation of his first two laws. Derived equations are required to be covariant, and a simplicity criterion requires that the four-vector force on a charged particle be linearly related to the four-vector velocity. The connecting tensor has derivable symmetry properties and contains the electric and magnetic field vectors. The Lorentz force law emerges, and Maxwell’s equations for free space emerge with the assumption that the tensor and its dual must both satisfy first-order partial differential equations. The inhomogeneous extension yields a charge density and a current density as being the source of the field, and yields the law of conservation of charge. Newton’s third law is reinterpreted as a reciprocity statement, which requires that the charge in the source term can be taken as the same physical entity as that of the test particle and that both can be assigned the same units. Requiring covariance under either spatial inversions or time reversals precludes magnetic charge being a source of electromagnetic fields that exert forces on electric charges.
文摘The nature and origin of the photon and elementary rest masses are some of the challeng-ing problems that physics face. The approaches used to solve these problems are complex and time-consuming. Specifically, the photon rest mass pays attention to theoretical physi-cists. Many experimental works show that the photon rest mass is non zero. This problem can be solved using generalized potential dependent special relativity, which has been de-rived using simple arguments, and Maxwell’s equations, besides the conventional Einstein energy-momentum relation. The results obtained show that the rest mass of photons and elementary particles are strongly dependent on the vacuum energy and a universal con-stant. This result conforms with the models that predict time decaying vacuum energy as-sociated with production of smaller rest mass particles followed by larger masses. The two potential dependent mass expressions conform with the cosmological models that suggest the photon is generated first by assuming the universe consisting of total constant vacuum with decaying cosmological part and mass generating part. Using Maxwell’s equations, beside plank and De Broglie hypothesis together with special relativity energy-momentum relation the photon rest mass is estimated. It was shown that the photon rest mass is ex-tremely small compared to the electron mass.
基金Project partially supported by the Research Grant Council of Hong Kong,China(Grant No.RGC 660207)the Macro-Science Program,Hong Kong University of Science and Technology,China(Grant No.DCC 00/01.SC01)
文摘The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.
基金the National Nature Science Foundation of China(No.61427803).
文摘In this paper,a self-adaptive method for the Maxwell’s Equations Derived Optimization(MEDO)is proposed.It is implemented by applying the Sequential Model-Based Optimization(SMBO)algorithm to the iterations of the MEDO,and achieves the automatic adjustment of the parameters.The proposed method is named as adaptive Maxwell’s equations derived optimization(AMEDO).In order to evaluate the performance of AMEDO,eight benchmarks are used and the results are compared with the original MEDO method.The results show that AMEDO can greatly reduce the workload of manual adjustment of parameters,and at the same time can keep the accuracy and stability.Moreover,the convergence of the optimization can be accelerated due to the dynamical adjustment of the parameters.In the end,the proposed AMEDO is applied to the side lobe level suppression and array failure correction of a linear antenna array,and shows great potential in antenna array synthesis.
文摘An FDTD system associated with uniaxial perfectly matched layer(UPML) for an electromagnetic scattering problem in two-dimensional space in polar coordinates is considered.Particularly the FDTD system of an initial-boundary value problems of the transverse magnetic(TM) mode to Maxwell's equations is obtained by Yee's algorithm,and the open domain of the scattering problem is truncated by a circle with a UPML.Besides,an artificial boundary condition is imposed on the outer boundary of the UPML.Afterwards,stability of the FDTD system on the truncated domain is established through energy estimates by the Gronwall inequality.Numerical experiments are designed to approve the theoretical analysis.
基金supported by the National Science Foundation of United States (Grants IIP-1362146 and CMMI-1462749)
文摘Harmonic thermoelastic waves in helical strands with Maxwell–Cattaneo heat conduction areinvestigated analytically and numerically. The corresponding dispersion relation is a sixth-orderalgebraic equation, governed by six non-dimensional parameters: two thermoelastic couplingconstants, one chirality parameter, the ratio between extensional and torsional moduli, the Fouriernumber, and the dimensionless thermal relaxation. The behavior of the solutions is discussedfrom two perspectives with an asymptotic-numerical approach: (1) the effect of thermal relaxationon the elastic wave celerities, and (2) the effect of thermoelastic coupling on the thermal wavecelerities. With small wavenumbers, the adiabatic solution for Fourier helical strands is recovered.However, with large wavenumbers, the solutions behave differently depending on the thermalrelaxation and chirality. Due to thermoelastic coupling, the thermal wave celerity deviates from theclassical result of the speed of second sound.
基金Supported by the Ministry of Education of Chinathe National Key Research and Development Program of China under Grant No 2016YFA0301902
文摘We report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates.A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
基金supported by NSF grant,FRG DMS 0554571supported substantially by Hong Kong RGC grant (Project 404407)partially by Cheung Kong Scholars Programme through Wuhan University,China.
文摘Some new reflection principles for Maxwell's equations are first established, which are then applied to derive two novel identifiability results in inverse electromagnetic obstacle scattering problems with polyhedral scatterers.
基金Leading Academic Discipline Project of SHNU,China (No.DZL803)Innovation Project of Shanghai Education Committee,China(No.12YZ081)+2 种基金General Scientific Research Project of SHNU,China (No.SK201121)National Natural Science Foundation of China(No.11001046)Fundamental Research Fundation for the Central Universities,China (No.11D10904)
文摘Green's relations and generalized Green's relations play a fundamental role in the study of semigroups.GV-semigroups are the generalizations of completely regular semigroups in the range of π-regular semigroups.In this paper,Green's relations and generalized Green's relations on GV-semigroups are considered by the structure of GV-semigroups.D=j and D C D* on GV-semigroups will be proved.
基金The research of the second author was supported by the NSFC (10871161)
文摘In order to study rpp semigroups, in particular, some special cases, several facts on (l)-Green’s relations and strongly rpp semigroups are given as some remarks.
文摘At present China-U.S.trade relations are in a state of confusion.Although both countries have gained tremendous benefits from the bilateral trade relationship,some Americans have intentionally distorted some basic facts regarding China-U.S.trade relations. Based on an analysis of some official and nonofficial research reports published in the United States,this article holds that the China-U.S.trade imbalance is the symptom of a bigger issue stemming from the contradiction between the United States as the world's sole superpower and China as an emerging power.Economic globalisation came about due to the needs of western developed countries represented by the United States to boost economic development.Only by seizing the opportunities of economic globalisation, has China gained strong economic growth. Such a development is changing the world political,economic,military and cultural landscape that have been shaped since the post-cold-war era,and has to some extent raised doubt or suspicion on the part of the United States and its western allies.This is a manifestation of how unprepared some people in the United States and other western countries are in the face of China's rapid development and rising status.So,their immediate reaction has been to seek protection for themselves,and try their utmost to prevent China's rapid growth from impacting on the international framework and their vested interests.
文摘A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.
文摘According to Hypersphere World-Universe Model, dark matter particles DIRACs are magnetic dipoles consisting of two Dirac’s monopoles. We conclude that DIRACs are the subject of Maxwell’s equations. So-called “auxiliary” magnetic field intensity H is indeed current density of magnetic dipoles. The developed approach to magnetic field can explain a wealth of discovered phenomena in Cosmic Magnetism: a dark magnetic field, the large-scale structure of the Milky Way’s magnetic field, and other magnetic phenomena which are only partly related to objects visible in other spectral ranges.
文摘China is in Africa in a vigorous way,and doing business in several countries like Sudan,Congo DRC,Angola,South Africa,and Nigeria.In the short term,the relationship may appear to be mutually beneficial.This paper seeks to address the issue of Africa's perspectives on China-Africa Relations and the FOCAC and examine the concept of strategic partnerships,determine the state of China-Africa relations,examines FOCAC and draw conclusion as well as recommendation on possible ways and issues for future engageme...
基金The project supported by the National Natural Science Foundation of China(50279029)
文摘Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper.A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived.A dimensionless memory(time)number θ is introduced.The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ=0.The complex dispersion equation is numerically solved to investigate the dispersion relation.The influences of θ and water depth on the dispersion characteristics and wave decay are discussed.It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.