In this paper, we introduce a four-filtrated version of the May spectral sequence (MSS), from which we study the general properties of the spectral sequence and give a collapse theorem. We also give an efficient metho...In this paper, we introduce a four-filtrated version of the May spectral sequence (MSS), from which we study the general properties of the spectral sequence and give a collapse theorem. We also give an efficient method to detect generators of May E 1-term E 1 s,t,b,* for a given (s, t, b, *). As an application, we give a method to prove the non-triviality of some compositions of the known homotopy elements in the classical Adams spectral sequence (ASS).展开更多
In this paper,we prove the non-triviality of the product h 0 k o δ s+4 ∈ Ext s+6,t(s) A (Z p ,Z p ) in the classical Adams spectral sequence,where p ≥ 11,0 ≤ s p-4,t(s) = (s + 4)p 3 q + (s + 3)p 2 q...In this paper,we prove the non-triviality of the product h 0 k o δ s+4 ∈ Ext s+6,t(s) A (Z p ,Z p ) in the classical Adams spectral sequence,where p ≥ 11,0 ≤ s p-4,t(s) = (s + 4)p 3 q + (s + 3)p 2 q + (s + 4)pq + (s + 3)q + s with q = 2(p-1).The elementary method of proof is by explicit combinatorial analysis of the (modified) May spectral sequence.展开更多
By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+...By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].展开更多
In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2...In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2 +p + 1)(p- 1) and p ≥ 7 is a prime number. This article generalizes the result and proves the existence of a new nontrivial family of filtration s + 6 in the stable homotopy groups of spheres πt1-8-6S which is represented by bygoγ^s+3 ∈ Ext^s+6+t1Atl (Zp, Zp) in the Adams spectral sequence, where n≥ 4, 0 ≤ s 〈 p - 4, t1 = 2p^n(p- 1) + 2(p- 1)((s + 3)p^2 + (s + 3)p + (s + 3)) + s.展开更多
Abstract Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is represented by (b0hn-h1bn-...Abstract Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is represented by (b0hn-h1bn-1)∈ ExtA^3,(p^n+p)q(Zp,Zp) in the Adams spectral sequence. At the same time, he proved that i.(hlhn) ∈ExtA^2,(p^n+P)q(H^*M, Zp) is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element ξn∈π(p^n+p)q-2M. In this paper, with Lin's results, we make use of the Adams spectral sequence and the May spectral sequence to detect a new nontrivial family of homotopy elements jj′j^-γsi^-i′ξn in the stable homotopy groups of spheres. The new one is of degree p^nq + sp^2q + spq + (s - 2)q + s - 6 and is represented up to a nonzero scalar by hlhnγ-s in the E2^s+2,*-term of the Adams spectral sequence, where p ≥ 7, q = 2(p - 1), n ≥ 4 and 3 ≤ s 〈 p.展开更多
In this paper,we determine some nontrivial secondary Adams differentials on the fourth line Ext^(4,*)_A(Z/p,Z/p)of the classical Adams spectral sequence.Specially,among these differentials,two of them are obtained via...In this paper,we determine some nontrivial secondary Adams differentials on the fourth line Ext^(4,*)_A(Z/p,Z/p)of the classical Adams spectral sequence.Specially,among these differentials,two of them are obtained via the matrix Massey products.展开更多
Let p be an odd prime.The authors detect a nontrivial element p of order p^2 in the stable homotopy groups of spheres by the classical Adams spectral sequence.It is represented by a_0^(p-2)h_1 ∈ Ext_A^(p-1,pq+p-2)(...Let p be an odd prime.The authors detect a nontrivial element p of order p^2 in the stable homotopy groups of spheres by the classical Adams spectral sequence.It is represented by a_0^(p-2)h_1 ∈ Ext_A^(p-1,pq+p-2)(Z/p,Z/p) in the E_2-term of the ASS and meanwhile p · p is the first periodic element αp.展开更多
Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we ...Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we prove that for p ≥ 7, n ≥ 4 and $3 \leqslant s < p - 1, h_0 b_{n - 1} \tilde \gamma _s \in Ext_A^{s + 3,p^n q + sp^2 q + (s - 1)pq + (s - 1)q + s - 3} (Z_p ,Z_p )$ survives to E∞ in the Adams spectral sequence, where q = 2(p — 1).展开更多
In this paper, some groups Ext A^s.t (Zp, Zp) with specialized s and t are first computed by the May spectrM sequence. Then we make use of the Adams spectral sequence to prove the existence of a new nontrivial famil...In this paper, some groups Ext A^s.t (Zp, Zp) with specialized s and t are first computed by the May spectrM sequence. Then we make use of the Adams spectral sequence to prove the existence of a new nontrivial family of filtration s+5 in the stable homotopy groups of spheres πpnq+(s+3)pq+(s+1)q-5S which is represented (up to a nonzero scalar) by β+2bohh∈ExtA^s+5,P^nq+(n+3)pq+(n+1)q+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 5 is a prime number, n ≥3, 0≤ s 〈 p - 3, q = 2(p - 1).展开更多
This paper computes the Thom map on γ2 and proves that it is represented by 2b2,0h1,2 in the ASS. The authors also compute the higher May differential of b2,0, from which it is proved that γ^~s(b0hn - h1bn-1) for...This paper computes the Thom map on γ2 and proves that it is represented by 2b2,0h1,2 in the ASS. The authors also compute the higher May differential of b2,0, from which it is proved that γ^~s(b0hn - h1bn-1) for 2 ≤ s 〈 p - 1 are permanent cycles in the ASS.展开更多
In 1981, Cohen constructed an infinite family of homotopy elements ζk∈ π*(S) represented by h0bk ∈ ExtA3,2(p-1)(pk+1+1)(z/p,Z/p) in the Adams spectral sequence, where p 〉 2 and k ≥ 1. In this paper, w...In 1981, Cohen constructed an infinite family of homotopy elements ζk∈ π*(S) represented by h0bk ∈ ExtA3,2(p-1)(pk+1+1)(z/p,Z/p) in the Adams spectral sequence, where p 〉 2 and k ≥ 1. In this paper, we make use of the Adams spectral sequence and the May spectral sequence to prove that the composite map ζn-1β2γs+3 is nontrivial in the stable homotopy groups of spheres πt(s,n)-s-8(S), where p ≥7, n 〉 3, 0≤s 〈p-5 andt(s,n) =2(p-1)[pn+(s+3)p2+(s+4)p+(s+3)]+s.展开更多
In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable hom...In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable homotopy groups of spheres.展开更多
To determine the stable homotopy groups of spheres π*(S) is one of the central problems in homotopy theory. Let p be a prime greater than 5. The authors make use of the May spectral sequence and the Adams spectral...To determine the stable homotopy groups of spheres π*(S) is one of the central problems in homotopy theory. Let p be a prime greater than 5. The authors make use of the May spectral sequence and the Adams spectral sequence to prove the existence of a Bn-related family of homotopy elements, β1ωnγs, in the stable homotopy groups of spheres, where Bn〉 3, 3≤s〈 p-2 and the Bn-element was detected by X. Liu.展开更多
基金the National Natural Science Foundation of China (Nos.10501045,10771105)the Fund of the Personnel Division of Nankai University
文摘In this paper, we introduce a four-filtrated version of the May spectral sequence (MSS), from which we study the general properties of the spectral sequence and give a collapse theorem. We also give an efficient method to detect generators of May E 1-term E 1 s,t,b,* for a given (s, t, b, *). As an application, we give a method to prove the non-triviality of some compositions of the known homotopy elements in the classical Adams spectral sequence (ASS).
基金Supported by the National Natural Science Foundation of China (Grant No. 10361005)
文摘In this paper,we prove the non-triviality of the product h 0 k o δ s+4 ∈ Ext s+6,t(s) A (Z p ,Z p ) in the classical Adams spectral sequence,where p ≥ 11,0 ≤ s p-4,t(s) = (s + 4)p 3 q + (s + 3)p 2 q + (s + 4)pq + (s + 3)q + s with q = 2(p-1).The elementary method of proof is by explicit combinatorial analysis of the (modified) May spectral sequence.
基金supported by the National Natural Science Foundation of China (10501045, 10771105)the NCET and the Fund of the Personnel Division of Nankai University.
文摘By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].
基金Supported by the National Natural Science Foundation of China (1051045)the Youth Project of Tianyuan Foundation of China (10426028)the China Postdoctoral,Science Foundation and Fund of the Personnel Division of Nankai University
文摘In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2 +p + 1)(p- 1) and p ≥ 7 is a prime number. This article generalizes the result and proves the existence of a new nontrivial family of filtration s + 6 in the stable homotopy groups of spheres πt1-8-6S which is represented by bygoγ^s+3 ∈ Ext^s+6+t1Atl (Zp, Zp) in the Adams spectral sequence, where n≥ 4, 0 ≤ s 〈 p - 4, t1 = 2p^n(p- 1) + 2(p- 1)((s + 3)p^2 + (s + 3)p + (s + 3)) + s.
基金the National Natural Science Foundation of China(No.10501045,10426028)the China Postdoc toral Science Foundationthe Fund of the Personnel Division of Nankai University
文摘Abstract Let A be the mod p Steenrod algebra and S the sphere spectrum localized at p, where p is an odd prime. In 2001 Lin detected a new family in the stable homotopy of spheres which is represented by (b0hn-h1bn-1)∈ ExtA^3,(p^n+p)q(Zp,Zp) in the Adams spectral sequence. At the same time, he proved that i.(hlhn) ∈ExtA^2,(p^n+P)q(H^*M, Zp) is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element ξn∈π(p^n+p)q-2M. In this paper, with Lin's results, we make use of the Adams spectral sequence and the May spectral sequence to detect a new nontrivial family of homotopy elements jj′j^-γsi^-i′ξn in the stable homotopy groups of spheres. The new one is of degree p^nq + sp^2q + spq + (s - 2)q + s - 6 and is represented up to a nonzero scalar by hlhnγ-s in the E2^s+2,*-term of the Adams spectral sequence, where p ≥ 7, q = 2(p - 1), n ≥ 4 and 3 ≤ s 〈 p.
基金Supported by NSFC(Grant Nos.11671154,11761072,12001474 and 11871284)Guangdong Natural Science Foundation(Grant No.2020A1515011008)“13th Five-Year”Science and Technology Project of Jilin Department of Education(Grant No.JJKH20200508KJ)。
文摘In this paper,we determine some nontrivial secondary Adams differentials on the fourth line Ext^(4,*)_A(Z/p,Z/p)of the classical Adams spectral sequence.Specially,among these differentials,two of them are obtained via the matrix Massey products.
基金supported by the National Natural Science Foundation of China(Nos.11761072,11671154)the China Postdoctoral Science Foundation Special Funded Project(No.2015T80909)
文摘Let p be an odd prime.The authors detect a nontrivial element p of order p^2 in the stable homotopy groups of spheres by the classical Adams spectral sequence.It is represented by a_0^(p-2)h_1 ∈ Ext_A^(p-1,pq+p-2)(Z/p,Z/p) in the E_2-term of the ASS and meanwhile p · p is the first periodic element αp.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171049)the Youth Project of Tianyuan Foundation(Grant No.10426028).
文摘Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we prove that for p ≥ 7, n ≥ 4 and $3 \leqslant s < p - 1, h_0 b_{n - 1} \tilde \gamma _s \in Ext_A^{s + 3,p^n q + sp^2 q + (s - 1)pq + (s - 1)q + s - 3} (Z_p ,Z_p )$ survives to E∞ in the Adams spectral sequence, where q = 2(p — 1).
基金the National Natural Science Foundation of China(No.10501045,10426028)the China Postdoctoral Science Foundation and the Fund of the Personnel Division of Nankai University
文摘In this paper, some groups Ext A^s.t (Zp, Zp) with specialized s and t are first computed by the May spectrM sequence. Then we make use of the Adams spectral sequence to prove the existence of a new nontrivial family of filtration s+5 in the stable homotopy groups of spheres πpnq+(s+3)pq+(s+1)q-5S which is represented (up to a nonzero scalar) by β+2bohh∈ExtA^s+5,P^nq+(n+3)pq+(n+1)q+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 5 is a prime number, n ≥3, 0≤ s 〈 p - 3, q = 2(p - 1).
基金Project supported by the National Natural Science Foundation of China (No.10501045)the Tianyuan Foundation of Mathematics (No.10426028)the Fund of the Personnel Division of Nankai University
文摘This paper computes the Thom map on γ2 and proves that it is represented by 2b2,0h1,2 in the ASS. The authors also compute the higher May differential of b2,0, from which it is proved that γ^~s(b0hn - h1bn-1) for 2 ≤ s 〈 p - 1 are permanent cycles in the ASS.
基金supported by National Natural Science Foundation of China(Grant Nos.11071125,11261062 and 11171161)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120031110025)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(Grant No.2012940)
文摘In 1981, Cohen constructed an infinite family of homotopy elements ζk∈ π*(S) represented by h0bk ∈ ExtA3,2(p-1)(pk+1+1)(z/p,Z/p) in the Adams spectral sequence, where p 〉 2 and k ≥ 1. In this paper, we make use of the Adams spectral sequence and the May spectral sequence to prove that the composite map ζn-1β2γs+3 is nontrivial in the stable homotopy groups of spheres πt(s,n)-s-8(S), where p ≥7, n 〉 3, 0≤s 〈p-5 andt(s,n) =2(p-1)[pn+(s+3)p2+(s+4)p+(s+3)]+s.
基金supported by the National Natural Science Foundation of China(Nos.12001474,12171165)Guangdong Natural Science Foundation(Nos.2020A1515011008,2021A1515010374)the“13th Five-Year”Science and Technology Project of Jilin Department of Education(No.JJKH20200508KJ)
文摘In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable homotopy groups of spheres.
基金supported by the National Natural Science Foundation of China(No.11571186)
文摘To determine the stable homotopy groups of spheres π*(S) is one of the central problems in homotopy theory. Let p be a prime greater than 5. The authors make use of the May spectral sequence and the Adams spectral sequence to prove the existence of a Bn-related family of homotopy elements, β1ωnγs, in the stable homotopy groups of spheres, where Bn〉 3, 3≤s〈 p-2 and the Bn-element was detected by X. Liu.