针对无人机系统组成结构复杂、影响其可靠性可用性的维修保障因素较多的问题,基于设备寿命分布假设,构建了考虑预防性维修和起飞前故障检查的系统平均故障间隔时间(mean time between failures,MTBF)和使用可用度解析模型。并模拟无人...针对无人机系统组成结构复杂、影响其可靠性可用性的维修保障因素较多的问题,基于设备寿命分布假设,构建了考虑预防性维修和起飞前故障检查的系统平均故障间隔时间(mean time between failures,MTBF)和使用可用度解析模型。并模拟无人机的维修过程,采用蒙特卡罗仿真的方法进行MTBF和使用可用度的仿真分析。解析与仿真两种方法的结果具有较好的一致性,可为无人机确定保障方案提供技术途径。展开更多
针对定时截尾试验中装备无失效被接收时平均无故障间隔时间(Mean Time Between Failures,MTBF)估计的问题,通过一种简易的方法从理论上推导得出了无失效情形下MTBF置信下限的计算公式,并与其他方法进行了比较。同时根据置信下限计算的...针对定时截尾试验中装备无失效被接收时平均无故障间隔时间(Mean Time Between Failures,MTBF)估计的问题,通过一种简易的方法从理论上推导得出了无失效情形下MTBF置信下限的计算公式,并与其他方法进行了比较。同时根据置信下限计算的公式分析出一种定时截尾试验点估计的实现方案。最后通过实际工程应用,验证了方法的有效性。展开更多
It is often difficult to calculate the failure rate of a complex system. For a complex system, therefore, the value of mean time between failures (MTBF) is also difficult to obtain with formula M=1/λ. The authors int...It is often difficult to calculate the failure rate of a complex system. For a complex system, therefore, the value of mean time between failures (MTBF) is also difficult to obtain with formula M=1/λ. The authors introduce a simple and practical algorithm, which can be easily used to obtain the value of MTBF of a complex system with M=∫∞0R(t)dt. The time axis is divided into lots of small intervals with step Δt, and lots of small trapezoids under the curve R(t) are obtained. By summing up all the areas of the trapezoids, a close approximation to MTBF of the system is obtained.展开更多
文摘针对无人机系统组成结构复杂、影响其可靠性可用性的维修保障因素较多的问题,基于设备寿命分布假设,构建了考虑预防性维修和起飞前故障检查的系统平均故障间隔时间(mean time between failures,MTBF)和使用可用度解析模型。并模拟无人机的维修过程,采用蒙特卡罗仿真的方法进行MTBF和使用可用度的仿真分析。解析与仿真两种方法的结果具有较好的一致性,可为无人机确定保障方案提供技术途径。
文摘针对定时截尾试验中装备无失效被接收时平均无故障间隔时间(Mean Time Between Failures,MTBF)估计的问题,通过一种简易的方法从理论上推导得出了无失效情形下MTBF置信下限的计算公式,并与其他方法进行了比较。同时根据置信下限计算的公式分析出一种定时截尾试验点估计的实现方案。最后通过实际工程应用,验证了方法的有效性。
文摘It is often difficult to calculate the failure rate of a complex system. For a complex system, therefore, the value of mean time between failures (MTBF) is also difficult to obtain with formula M=1/λ. The authors introduce a simple and practical algorithm, which can be easily used to obtain the value of MTBF of a complex system with M=∫∞0R(t)dt. The time axis is divided into lots of small intervals with step Δt, and lots of small trapezoids under the curve R(t) are obtained. By summing up all the areas of the trapezoids, a close approximation to MTBF of the system is obtained.