In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural produ...In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions.展开更多
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size ...Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.展开更多
Macroaggregate organic carbon(Macro-OC)accumulation in paddy soils is of great significance in promoting multiple agroecosystem services.However,the effects of different fertilization practices on Macro-OC accumulatio...Macroaggregate organic carbon(Macro-OC)accumulation in paddy soils is of great significance in promoting multiple agroecosystem services.However,the effects of different fertilization practices on Macro-OC accumulation in paddy soils at the regional scale have not been comprehensively investigated.Here,we conducted long-term fertilization field experiments at four sites,Taoyuan,Wangcheng,Jinxian,and Suzhou,in the subtropical area of China to reveal the effects of inorganic and organic-inorganic(OIF)fertilization on Macro-OC accumulation and its relationships with important microbial traits(the abundance ratio of GH48:cbhI genes and the richness of keystone bacterial taxa)in paddy soils.The results showed that long-term fertilization(particularly OIF)significantly increased the content of Macro-OC,which mainly consisted of particulate organic carbon(C).Organic-inorganic fertilization decreased the percentage of O-alkyl C but increased the percentages of alkyl,aromatic,and phenolic C.Organic-inorganic fertilization promoted the abundance of the bacterial cellulose-degrading gene GH48 retrieved from macroaggregates.The orders Anaerolineales,Bacillales,and Clostridiales were identified as keystone bacterial taxa in macroaggregates and were significantly correlated with the physical fraction and chemical structure of Macro-OC.Structural equation modeling revealed that fertilization-induced changes in soil pH and C:N ratio affected the richness of Anaerolineales,Bacillales,and Clostridiales,which was strongly associated with the increase of percentages of aromatic and phenolic C and further facilitated Macro-OC accumulation.Together,these results suggested that OIF promoted Macro-OC accumulation associated with key bacterial populations in paddy soils.The results provide an important basis for boosting soil C accrual in the subtropical rice-growing areas.展开更多
The activities of invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase in different fractions of waterstable aggregates (WSA) were examined in long-term (26 years) fertilised soils. The l...The activities of invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase in different fractions of waterstable aggregates (WSA) were examined in long-term (26 years) fertilised soils. The long-term application of organic manure (OM) with chemical fertiliser (CF) significantly increased macroaggregate and decreased microaggregate percentages, enhanced the mean weight diameter, and significantly increased soil total carbon (TC) and total nitrogen (TN) contents of WSA in different size fractions. Combined fertilisation with OM and CF also increased invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase activities of WSA in different size fractions. Enzyme activities were higher in macroaggregates than in microaggregates. The distribution of enzyme activities generally followed the distribution of TC and TN in WSA. The geometric mean of the enzyme activities in different WSA of OM-treated soils was significantly higher than that in soils treated with 100% CF or no fertiliser. The results indicated that the long-term combined application of OM with CF increased the aggregate stability and enzyme activity of different WSA sizes, and consequently, improved soil physical structure and increased soil microbial activity.展开更多
Soil in greenhouses is likely to suffer a gradual decline in aggregate stability. Determination of the effects of different fertiliser practices on soil aggregate stability is important for taking advantage of solar g...Soil in greenhouses is likely to suffer a gradual decline in aggregate stability. Determination of the effects of different fertiliser practices on soil aggregate stability is important for taking advantage of solar greenhouses. Soil aggregate stability and iron (Fe) and aluminium (A1) oxide contents were investigated in a 26-year long-term fertilisation experiment in greenhouse in Shenyang, China, under eight fertiliser treatments: manure (M), fertiliser N (FN), fertiliser N with manure (MN), fertiliser P (FP), fertiliser P with manure (MP), fertiliser NP (FNP), fertiliser NP with manure (MNP), and control without any fertiliser (CK). A wet sieving method was used to determine aggregate size distribution and water-stable aggregates (WSA), mean weight diameter and geometric mean diameter as the indices of soil aggregate stability. Different fertiliser treatments had a statistically significant influence on aggregate stability and Fe and A1 oxide contents. Long-term application of inorganic fertilisers had no obvious effects on the mass proportion of aggregates. By contrast, manure application significantly increased the mass proportion of macroaggregates at the expense of microaggregates. All treatments, with the exception of FNP, significantly increased the stability of macroaggregates but decreased that of microaggregates when compared with CK. Aggregation under MP and MN was better than that under M and MNP; however, no significant differences were found among inorganic fertiliser treatments (i.e., FN, FP, and FNP). A positive relation was found between pyrophosphate-extractable Fe and WSA (r=0.269), but no significant relations were observed between other Fe and Al oxides and aggregate stability.展开更多
Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecologic...Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.展开更多
Standard Disk Plough(SDP)is the integral element of traditional farming system in Middle and Northern Sudan.In SDP,the tilt angle between the planes of the cutting edge of the disk which is inclined to a vertical line...Standard Disk Plough(SDP)is the integral element of traditional farming system in Middle and Northern Sudan.In SDP,the tilt angle between the planes of the cutting edge of the disk which is inclined to a vertical line may be altered according to the field conditions.Tractor drivers usually use an angle close to maximum in order to decrease the tillage depth,consequently decreasing power requirements,without considering the tillage quality and the impact on the soil properties.This experiment was conducted at the College of Agricultural Studies farm of Sudan University of Science and Technology to study the effects of three tilt angles(15°,20°and 25°)on soil bulk density,mean weight diameter,wheel slippage,work rate(or effective field capacity)and soil volume disturbed using mounted disk plough.The nature of soil on the farm found to be light clay.The theoretical forward speed was maintained at 6 km/h.The results showed that increasing tilt angle of the plough significantly(p<0.05)increased the bulk density,mean weight diameter and field capacity while significantly decreasing the tractor wheel slippage and soil volume disturbance.展开更多
Saline-sodic soil has a poor structure,low nutrient content,and excessive sodium in the western Heilongjiang Province,resulting in low crop productivity.Experimental treatments were established by applying manure to t...Saline-sodic soil has a poor structure,low nutrient content,and excessive sodium in the western Heilongjiang Province,resulting in low crop productivity.Experimental treatments were established by applying manure to the soil for 5 years,12 years,and 16 years and soil without manure application was used as a control treatment(CK).The results indicate that the application of manure significantly increased soil macroaggregates,the mean weight diameter(MWD)and the geometric mean diameter(GMD)compared to those for the CK treatment.The soil organic matter(SOM)concentration increased from 17.8 to 47.9 g/kg,the soil pH decreased from 10.18 to 7.89,and the electrical conductivity(EC)decreased from 4.92 to 0.19 dS/m.The soil exchangeable Na^(+)was decreased and exchangeable Ca^(2+)was increased in the treatments with manure application compared with the CK treatment.And a decrease in the CaCO_(3)content was observed in the treatment with manure.Water-stable aggregates(WSAs)of greater than 2.0 mm were the dominant factor driving the changes in the MWD,and WSAs of 1.0-2.0 mm were the dominant factor driving the changes in the GMD.The correlation matrix showed that the SOM and soil exchangeable Ca^(2+)concentration was positively correlated with the stability of the WSAs,while the pH,EC,and soil exchangeable Na^(+)were negatively and significantly correlated.We conclude that the long-term application of manure to saline-sodic soil can increase the proportion of soil macroaggregates and thus increase the stability of WSAs,as a result of the formation of soil macroaggregates mainly caused by the increase in the organic colloidal matter and soil exchangeable Ca^(2+),and by the decrease in soil exchangeable Na^(+).展开更多
基金funded by the National Key Research and Development Project (2017YFC0504303)the Strategic Priority Research Program of Chines Academy of Science (XDA2003010301)the National Natural Science Foundation of China (41671103)。
文摘In arid desert regions of northwestern China, reclamation and subsequent irrigated cultivation have become effective ways to prevent desertification, expand arable croplands, and develop sustainable agricultural production. Improvement in soil texture and fertility is crucial to high soil quality and stable crop yield. However, knowledge on the long-term effects of the conversion of desert lands into arable croplands is very limited. To address this problem, we conducted this study in an arid desert region of northwestern China to understand the changes in soil physical-chemical properties after 0, 2, 5, 10, 17, and 24 years of cultivation. Our results showed that silt and clay contents at the 17-year-old sites increased 17.5 and 152.3 folds, respectively, compared with that at the 0-year-old sites. The soil aggregate size fraction and its stability exhibited an exponential growth trend with increasing cultivation ages, but no significant change was found for the proportion of soil macroaggregates(>5.00 mm) during the 17 years of cultivation. The soil organic carbon(SOC) content at the 24-year-old sites was 6.86 g/kg and increased 8.8 folds compared with that at the 0-year-old sites. The total(or available) nitrogen, phosphorus, and potassium contents showed significant increasing trends and reached higher values after 17(or 24) years of cultivation. Changes in soil physical-chemical properties successively experienced slow, rapid, and stable development stages, but some key properties(such as soil aggregate stability and SOC) were still too low to meet the sustainable agricultural production. The results of this long-term study indicated that reasonable agricultural management, such as expanding no-tillage land area, returning straw to the fields, applying organic fertilizer, reducing chemical fertilizer application, and carrying out soil testing for formula fertilization, is urgently needed in arid desert regions.
基金National Basic Research Program of China (2005CB121101, 2005CB121103)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-407)
文摘Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.
基金supported by the National Key R&D Program of China(Nos.2022YFD1500401 and 2022YFD1500203)the National Natural Science Foundation of China(Nos.42177332 and 41967002)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA24020104 and XDA28020203)the China Agriculture Research System(Nos.CARS-03-15 and CARS-52)。
文摘Macroaggregate organic carbon(Macro-OC)accumulation in paddy soils is of great significance in promoting multiple agroecosystem services.However,the effects of different fertilization practices on Macro-OC accumulation in paddy soils at the regional scale have not been comprehensively investigated.Here,we conducted long-term fertilization field experiments at four sites,Taoyuan,Wangcheng,Jinxian,and Suzhou,in the subtropical area of China to reveal the effects of inorganic and organic-inorganic(OIF)fertilization on Macro-OC accumulation and its relationships with important microbial traits(the abundance ratio of GH48:cbhI genes and the richness of keystone bacterial taxa)in paddy soils.The results showed that long-term fertilization(particularly OIF)significantly increased the content of Macro-OC,which mainly consisted of particulate organic carbon(C).Organic-inorganic fertilization decreased the percentage of O-alkyl C but increased the percentages of alkyl,aromatic,and phenolic C.Organic-inorganic fertilization promoted the abundance of the bacterial cellulose-degrading gene GH48 retrieved from macroaggregates.The orders Anaerolineales,Bacillales,and Clostridiales were identified as keystone bacterial taxa in macroaggregates and were significantly correlated with the physical fraction and chemical structure of Macro-OC.Structural equation modeling revealed that fertilization-induced changes in soil pH and C:N ratio affected the richness of Anaerolineales,Bacillales,and Clostridiales,which was strongly associated with the increase of percentages of aromatic and phenolic C and further facilitated Macro-OC accumulation.Together,these results suggested that OIF promoted Macro-OC accumulation associated with key bacterial populations in paddy soils.The results provide an important basis for boosting soil C accrual in the subtropical rice-growing areas.
基金Supported by the National Basic Research Program (973 program) of China (No. 2007CB109304)the Special Fund for Agroscientific Research in the Public Interest of China (No. 200803031)
文摘The activities of invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase in different fractions of waterstable aggregates (WSA) were examined in long-term (26 years) fertilised soils. The long-term application of organic manure (OM) with chemical fertiliser (CF) significantly increased macroaggregate and decreased microaggregate percentages, enhanced the mean weight diameter, and significantly increased soil total carbon (TC) and total nitrogen (TN) contents of WSA in different size fractions. Combined fertilisation with OM and CF also increased invertase, protease, urease, acid phosphomonoesterase, dehydrogenase, and catalase activities of WSA in different size fractions. Enzyme activities were higher in macroaggregates than in microaggregates. The distribution of enzyme activities generally followed the distribution of TC and TN in WSA. The geometric mean of the enzyme activities in different WSA of OM-treated soils was significantly higher than that in soils treated with 100% CF or no fertiliser. The results indicated that the long-term combined application of OM with CF increased the aggregate stability and enzyme activity of different WSA sizes, and consequently, improved soil physical structure and increased soil microbial activity.
基金supported by the National Natural Science Foundation of China(No.31171997)the Fifth Session of Geping Green Action-123 Project of Liaoning Environmental Research and Education,China(No.CEPF2012-123-1-4)the Innovative Graduate Training Program of Shenyang Agricultural University of China
文摘Soil in greenhouses is likely to suffer a gradual decline in aggregate stability. Determination of the effects of different fertiliser practices on soil aggregate stability is important for taking advantage of solar greenhouses. Soil aggregate stability and iron (Fe) and aluminium (A1) oxide contents were investigated in a 26-year long-term fertilisation experiment in greenhouse in Shenyang, China, under eight fertiliser treatments: manure (M), fertiliser N (FN), fertiliser N with manure (MN), fertiliser P (FP), fertiliser P with manure (MP), fertiliser NP (FNP), fertiliser NP with manure (MNP), and control without any fertiliser (CK). A wet sieving method was used to determine aggregate size distribution and water-stable aggregates (WSA), mean weight diameter and geometric mean diameter as the indices of soil aggregate stability. Different fertiliser treatments had a statistically significant influence on aggregate stability and Fe and A1 oxide contents. Long-term application of inorganic fertilisers had no obvious effects on the mass proportion of aggregates. By contrast, manure application significantly increased the mass proportion of macroaggregates at the expense of microaggregates. All treatments, with the exception of FNP, significantly increased the stability of macroaggregates but decreased that of microaggregates when compared with CK. Aggregation under MP and MN was better than that under M and MNP; however, no significant differences were found among inorganic fertiliser treatments (i.e., FN, FP, and FNP). A positive relation was found between pyrophosphate-extractable Fe and WSA (r=0.269), but no significant relations were observed between other Fe and Al oxides and aggregate stability.
基金Supported by the National Natural Science Foundation of China (No.30971869)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2-YW-438-1)
文摘Biologically active soil organic carbon (BASOC) is an important fraction of soil organic carbon (SOC), but our understanding of the correlation between BASOC and soil aggregate stability is limited. At an ecological experimental station (28° 04'-28° 37' N, 116° 41'-117° 09' E) in Yujiang County, Jiangxi Province, China, we analyzed the dynamic relationship between soil aggregate stability and BASOC content over time in the red soil (Udic Ferrosols) fertilized with a nitrogen-phosphorus-potassium chemical fertilizer (NPK) without manure or with NPK plus livestock manure or green manure. The dynamics of BASOC was evaluated using CO2 efflux, and soil aggregates were separated according to size using a wet-sieving technique. The soils fertilized with NPK plus livestock manure had a significantly higher content of BASOC and an improved aggregate stability compared to the soils fertilized with NPK plus green manure or NPK alone. The BASOC contents in all fertilized soils decreased over time. The contents of large aggregates (800-2 000 μm) dramatically decreased over the first 7 d of incubation, but the contents of small aggregates (〈 800 μm) either remained the same or increased, depending on the incubation time and specific aggregate sizes. The aggregate stability did not differ significantly at the beginning and end of incubation, but the lowest stability in all fertilized soils occurred in the middle of the incubation, which implied that the soils had a strong resilience for aggregate stability. The change in BASOC content was only correlated with aggregate stability during the first 27 d of incubation.
基金Thanks for the financial support from The National Maize Industry Technology R&D CenterMechanized corn(CARS-02)production system optimization technology and equipment research demonstration projects(200903059).
文摘Standard Disk Plough(SDP)is the integral element of traditional farming system in Middle and Northern Sudan.In SDP,the tilt angle between the planes of the cutting edge of the disk which is inclined to a vertical line may be altered according to the field conditions.Tractor drivers usually use an angle close to maximum in order to decrease the tillage depth,consequently decreasing power requirements,without considering the tillage quality and the impact on the soil properties.This experiment was conducted at the College of Agricultural Studies farm of Sudan University of Science and Technology to study the effects of three tilt angles(15°,20°and 25°)on soil bulk density,mean weight diameter,wheel slippage,work rate(or effective field capacity)and soil volume disturbed using mounted disk plough.The nature of soil on the farm found to be light clay.The theoretical forward speed was maintained at 6 km/h.The results showed that increasing tilt angle of the plough significantly(p<0.05)increased the bulk density,mean weight diameter and field capacity while significantly decreasing the tractor wheel slippage and soil volume disturbance.
基金This work was financially supported by the Postdoctoral Science Foundation of Heilongjiang Province(Grant No.LBH-Q19073)the“Young Talents”Project of Northeast Agricultural University(Grant No.19XG08).
文摘Saline-sodic soil has a poor structure,low nutrient content,and excessive sodium in the western Heilongjiang Province,resulting in low crop productivity.Experimental treatments were established by applying manure to the soil for 5 years,12 years,and 16 years and soil without manure application was used as a control treatment(CK).The results indicate that the application of manure significantly increased soil macroaggregates,the mean weight diameter(MWD)and the geometric mean diameter(GMD)compared to those for the CK treatment.The soil organic matter(SOM)concentration increased from 17.8 to 47.9 g/kg,the soil pH decreased from 10.18 to 7.89,and the electrical conductivity(EC)decreased from 4.92 to 0.19 dS/m.The soil exchangeable Na^(+)was decreased and exchangeable Ca^(2+)was increased in the treatments with manure application compared with the CK treatment.And a decrease in the CaCO_(3)content was observed in the treatment with manure.Water-stable aggregates(WSAs)of greater than 2.0 mm were the dominant factor driving the changes in the MWD,and WSAs of 1.0-2.0 mm were the dominant factor driving the changes in the GMD.The correlation matrix showed that the SOM and soil exchangeable Ca^(2+)concentration was positively correlated with the stability of the WSAs,while the pH,EC,and soil exchangeable Na^(+)were negatively and significantly correlated.We conclude that the long-term application of manure to saline-sodic soil can increase the proportion of soil macroaggregates and thus increase the stability of WSAs,as a result of the formation of soil macroaggregates mainly caused by the increase in the organic colloidal matter and soil exchangeable Ca^(2+),and by the decrease in soil exchangeable Na^(+).