Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced acc...Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.展开更多
Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave he...Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.展开更多
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s...RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.展开更多
To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitr...To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.展开更多
Based on previous research work,we present a spectrum deviation method to recognize a foreshock or generalized foreshock in this paper. The criterion to determine whether an event is a foreshock is a wide spectrum for...Based on previous research work,we present a spectrum deviation method to recognize a foreshock or generalized foreshock in this paper. The criterion to determine whether an event is a foreshock is a wide spectrum for an ordinary event,however,a moderate earthquake with foreshock or generalized foreshock has the characteristics of a narrow frequency band,and it deviates to the low frequency. It may be explained by metastable extension in the rupture source or related area of the main shock or regional fragmentation damage and crack nucleation process. The calculation results of two foreshocks,the M_S4. 7 event which occurred before the Yushu M_S7. 1 earthquake on April 14,2010 and the M_S5. 3 event which occurred before the Yutian M_S7. 3 earthquake on February 12,2014,show that the spectra of foreshocks shift,and they are quite different from the nonforeshock seismic spectrum of equivalent size. Therefore,this result can verify the validity of the spectrum deviation method.展开更多
The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fu...The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.展开更多
The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting a...The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.展开更多
Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illust...Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.展开更多
A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high co...A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.展开更多
Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors.Despite researchers follow the sparse identification nonlinear dynamics algorithm(SIND...Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors.Despite researchers follow the sparse identification nonlinear dynamics algorithm(SINDy)rule to restore nonlinear equations,there also exist obstacles.One is the excessive dependence on empirical parameters,which increases the difficulty of data pre-processing.Another one is the coexistence of multiple coefficient vectors,which causes the optimal solution to be drowned in multiple solutions.The third one is the composition of basic function,which is exclusively applicable to specific equations.In this article,a local sparse screening identification algorithm(LSSI)is proposed to identify nonlinear systems.First,we present the k-neighbor parameter to replace all empirical parameters in data filtering.Second,we combine the mean error screening method with the SINDy algorithm to select the optimal one from multiple solutions.Third,the time variable t is introduced to expand the scope of the SINDy algorithm.Finally,the LSSI algorithm is applied to recover a classic ODE and a bi-stable energy harvester system.The results show that the new algorithm improves the ability of noise immunity and optimal parameters identification provides a desired foundation for nonlinear analyses.展开更多
Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecol...Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecological carrying capacity) including 24 third-grade indicators was established,and the carrying capacity of land resources in ten cities of Shaanxi Province in 2013 was assessed and analyzed by using mean square error analysis method and hierarchical clustering method. The results showed that the three types of carrying capacity in most cities of Shaanxi Province are shown as follows: ecological carrying capacity > living carrying capacity > production carrying capacity,and the differences between various regions in a single type of carrying capacity basically accorded with the actual situation of development in each city; there were obvious differences between various cities in the comprehensive carrying capacity of land resources,which was basically consistent with regional economic and social development.展开更多
The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) o...The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.展开更多
To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four importa...To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.展开更多
A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which a...A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal Inclusions and a ductile matrix are predicted by cc mean field method. The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite. The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.展开更多
This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was t...This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.展开更多
The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-o...The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.展开更多
We propose a cavity length demodulation method that combines virtual reference interferometry(VRI) and minimum mean square error(MMSE) algorithm for fiber-optic Fabry–Perot(F-P) sensors. In contrast to the conv...We propose a cavity length demodulation method that combines virtual reference interferometry(VRI) and minimum mean square error(MMSE) algorithm for fiber-optic Fabry–Perot(F-P) sensors. In contrast to the conventional demodulating method that uses fast Fourier transform(FFT) for cavity length estimation,our method employs the VRI technique to obtain a raw cavity length, which is further refined by the MMSE algorithm. As an experimental demonstration, a fiber-optic F-P sensor based on a sapphire wafer is fabricated for temperature sensing. The VRI-MMSE method is employed to interrogate cavity lengths of the sensor under different temperatures ranging from 28°C to 1000°C. It eliminates the "mode jumping" problem in the FFT-MMSE method and obtains a precision of 4.8 nm, corresponding to a temperature resolution of 2.0°C over a range of 1000°C. The experimental results reveal that the proposed method provides a promising, high precision alternative for demodulating fiber-optic F-P sensors.展开更多
For a non-Gaussian Levy model, it is shown that if the model exists a trivial arbitrage-free interval, option pricing by mean correcting method is always arbitrage-free, and if the arbitrage-free interval is non-trivi...For a non-Gaussian Levy model, it is shown that if the model exists a trivial arbitrage-free interval, option pricing by mean correcting method is always arbitrage-free, and if the arbitrage-free interval is non-trivial, this pricing method may lead to arbitrage in some cases. In the latter case, some necessary and sufficient conditions under which option price is arbitrage-free are obtained.展开更多
Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is...Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is purposely avoided in deducing the formulae of second order forces and a series of functions Φ_(dRn)^((?)) are used.The far field expression of is given,which for (x,U,z)∈Σ,φ_(dRn)^((2))(?) φ_d^((2)).Using these properties formulae for calculating second order diffraction forces are obtained.To calculate the integral ∫∫_(?)1/g f_(?)Ψ_(?)ds it is divided into two parts.One is the integral over a finite domain and the function under the integral is continuous,so the usual approximate integration formulae may be used. The other is the integral over an infinite domain.Using the far field expression of first order potentials,formulae for calculating the integral to meet given accuracies are given. The mooring force in surge direction is used for comparison between numerical predictions and experimental measurements.The predicted results are checked against the measured value in a specially designed test.In the low frequency domain of interest,the mooring forces in surge,for calculated and experimental spectra are in good consistency so long as the damping coefficients is choosen appropriately.展开更多
基金Project(50378036) supported by the National Natural Science Foundation of ChinaProject(200503) supported by Foundation of Communications Department of Hunan Province, China
文摘Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.
基金support for this study was provided by the National Natural Science Foundation of China (No.40776006)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060423009)the Science and Technology Development Program of Shandong Province (Grant No.2008GGB01099)
文摘Significant wave height is an important criterion in designing coastal and offshore structures.Based on the orthogonality principle, the linear mean square estimation method is applied to calculate significant wave height in this paper.Twenty-eight-year time series of wave data collected from three ocean buoys near San Francisco along the California coast are analyzed.It is proved theoretically that the computation error will be reduced by using as many measured data as possible for the calculation of significant wave height.Measured significant wave height at one buoy location is compared with the calculated value based on the data from two other adjacent buoys.The results indicate that the linear mean square estimation method can be well applied to the calculation and prediction of significant wave height in coastal regions.
基金financially supported by Key Technologies R&D Program of Shandong Province(2015GSF115018)Natural Science Foundation of Shandong Province(ZR2013FL027+1 种基金ZR2013DM 014)Youth Foundation of Shandong Academy of Science(2013QN030)
文摘RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.
基金supported by National Engineering School of Tunis (No.13039.1)
文摘To reduce computational costs, an improved form of the frequency domain boundary element method(BEM) is proposed for two-dimensional radiation and propagation acoustic problems in a subsonic uniform flow with arbitrary orientation. The boundary integral equation(BIE) representation solves the two-dimensional convected Helmholtz equation(CHE) and its fundamental solution, which must satisfy a new Sommerfeld radiation condition(SRC) in the physical space. In order to facilitate conventional formulations, the variables of the advanced form are expressed only in terms of the acoustic pressure as well as its normal and tangential derivatives, and their multiplication operators are based on the convected Green's kernel and its modified derivative. The proposed approach significantly reduces the CPU times of classical computational codes for modeling acoustic domains with arbitrary mean flow. It is validated by a comparison with the analytical solutions for the sound radiation problems of monopole,dipole and quadrupole sources in the presence of a subsonic uniform flow with arbitrary orientation.
基金sponsored by the National Key Technology Support Program of China entitled "Application of Digital Seismic Technology to Mid-and Short-term Prediction of Strong Earthquake"(2012BAK19B02-01)
文摘Based on previous research work,we present a spectrum deviation method to recognize a foreshock or generalized foreshock in this paper. The criterion to determine whether an event is a foreshock is a wide spectrum for an ordinary event,however,a moderate earthquake with foreshock or generalized foreshock has the characteristics of a narrow frequency band,and it deviates to the low frequency. It may be explained by metastable extension in the rupture source or related area of the main shock or regional fragmentation damage and crack nucleation process. The calculation results of two foreshocks,the M_S4. 7 event which occurred before the Yushu M_S7. 1 earthquake on April 14,2010 and the M_S5. 3 event which occurred before the Yutian M_S7. 3 earthquake on February 12,2014,show that the spectra of foreshocks shift,and they are quite different from the nonforeshock seismic spectrum of equivalent size. Therefore,this result can verify the validity of the spectrum deviation method.
文摘The objective is to develop a model considering demand dependent on selling price and deterioration occurs after a certain period of time, which follows two-parameter Weibull distribution. Shortages are allowed and fully backlogged. Fuzzy optimal solution is obtained by considering hexagonal fuzzy numbers and for defuzzification Graded Mean Integration Representation Method. A numerical example is provided for the illustration of crisp and fuzzy, both models. To observe the effect of changes in parameters, sensitivity analysis is carried out.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060200)National Key Technology Research and Development Program of China(No.2012BAD22B04)Visiting Professorship for Senior International Scientists of Chinese Academy of Sciences(No.2012T1Z0006)
文摘The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage.
基金supported by the National Natural Science Foundation of China (10702078)the Research Foundation of National University of Defense Technology (JC08-01-05)
文摘Sun synchronous orbit and frozen orbit formed due to J 2 perturbation have very strict constraints on orbital parameters,which have restricted the application a lot.In this paper,several control strategies were illustrated to realize Sun synchronous frozen orbit with arbitrary orbital elements using continuous low-thrust.Firstly,according to mean element method,the averaged rate of change of the orbital elements,originating from disturbing constant accelerations over one orbital period,was derived from Gauss' variation of parameters equations.Then,we proposed that binormal acceleration could be used to realize Sun synchronous orbit,and radial or transverse acceleration could be adopted to eliminate the rotation of the argument of the perigee.Finally,amending methods on the control strategies mentioned above were presented to eliminate the residual secular growth.Simulation results showed that the control strategies illustrated in this paper could realize Sun synchronous frozen orbit with arbitrary orbital elements,and can save much more energy than the schemes presented in previous studies,and have no side effect on other orbital parameters' secular motion.
文摘A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.
基金The work was supported by the National Science Foundation of China(grant nos.11772218 and 11872044)China-UK NSFC-RS Joint Project(grant nos.11911530177 in China and IE181496 in the UK)Tianjin Research Program of Application Foundation and Advanced Technology(grant no.17JCYBJC18900).
文摘Extracting nonlinear governing equations from noisy data is a central challenge in the analysis of complicated nonlinear behaviors.Despite researchers follow the sparse identification nonlinear dynamics algorithm(SINDy)rule to restore nonlinear equations,there also exist obstacles.One is the excessive dependence on empirical parameters,which increases the difficulty of data pre-processing.Another one is the coexistence of multiple coefficient vectors,which causes the optimal solution to be drowned in multiple solutions.The third one is the composition of basic function,which is exclusively applicable to specific equations.In this article,a local sparse screening identification algorithm(LSSI)is proposed to identify nonlinear systems.First,we present the k-neighbor parameter to replace all empirical parameters in data filtering.Second,we combine the mean error screening method with the SINDy algorithm to select the optimal one from multiple solutions.Third,the time variable t is introduced to expand the scope of the SINDy algorithm.Finally,the LSSI algorithm is applied to recover a classic ODE and a bi-stable energy harvester system.The results show that the new algorithm improves the ability of noise immunity and optimal parameters identification provides a desired foundation for nonlinear analyses.
文摘Based on relevant research results,from the perspective of land use functions,an evaluation indicator system of carrying capacity of land resources composed of three second-grade indicators( production,living and ecological carrying capacity) including 24 third-grade indicators was established,and the carrying capacity of land resources in ten cities of Shaanxi Province in 2013 was assessed and analyzed by using mean square error analysis method and hierarchical clustering method. The results showed that the three types of carrying capacity in most cities of Shaanxi Province are shown as follows: ecological carrying capacity > living carrying capacity > production carrying capacity,and the differences between various regions in a single type of carrying capacity basically accorded with the actual situation of development in each city; there were obvious differences between various cities in the comprehensive carrying capacity of land resources,which was basically consistent with regional economic and social development.
基金Projects(51278216,51308241)supported by the National Natural Science Foundation of ChinaProject(2013BS010)supported by the Funds of Henan University of Technology for High-level Talents,China
文摘The objective is to develop an approach for the determination of the target reliability index for serviceability limit state(SLS) of single piles. This contributes to conducting the SLS reliability-based design(RBD) of piles. Based on a two-parameter,hyperbolic curve-fitting equation describing the load-settlement relation of piles, the SLS model factor is defined. Then, taking into account the uncertainties of load-settlement model, load and bearing capacity of piles, the formula for computing the SLS reliability index(βsls) is obtained using the mean value first order second moment(MVFOSM) method. Meanwhile, the limit state function for conducting the SLS reliability analysis by the Monte Carlo simulation(MCS) method is established. These two methods are finally applied to determine the SLS target reliability index. Herein, the limiting tolerable settlement(slt) is treated as a random variable. For illustration, four load test databases from South Africa are compiled again to conduct reliability analysis and present the recommended target reliability indices. The results indicate that the MVFOSM method overestimates βsls compared to that computed by the MCS method. Besides, both factor of safety(FS) and slt are key factors influencing βsls, so the combination of FS and βsls is welcome to be used for the SLS reliability analysis of piles when slt is determined. For smaller slt, pile types and soils conditions have significant influence on the SLS target reliability indices; for larger slt, slt is the major factor having influence on the SLS target reliability indices. This proves that slt is the most key parameter for the determination of the SLS target reliability index.
基金Project(2009ZX04014-074)supported by the National High Technology Research and Development Program of ChinaProject(20120006110017)supported by Doctoral Fund Program of Ministry of Education of ChinaProject(P2014-15)supported by State Key Laboratory of Materials Processing and Die & Mould Technology(Huazhong University of Science and Technology),China
文摘To gain a deep insight into the hot drawing process of aluminum alloy sheet, simulations of cylindrical cup drawing at elevated temperatures were carried out with experimental validation. The influence of four important process parameters, namely,punch velocity, blank holder force(BHF), friction coefficient and initial forming temperature of blank on drawing characteristics(i.e.minimum thickness and thickness deviation) was investigated with the help of design of experiments(DOE), analysis of variance(ANOVA) and analysis of mean(ANOM). Based on the results of ANOVA, it is shown that the blank holder force has the greatest influence on minimum thickness. The importance of punch velocity for thickness deviation is 44.35% followed by BHF of 24.88%,friction coefficient of 15.77% and initial forming temperature of blank of 14.995%. After determining the significance of each factor on forming characteristics, how the individual parameter affects characteristics was further analyzed by ANOM.
基金Funded by National Science Foundation of China(Grant:1987205).
文摘A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal Inclusions and a ductile matrix are predicted by cc mean field method. The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite. The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.
基金The National High Technology Research and Development Program of China (863 Program) (No.2003AA517020)
文摘This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.
文摘The aim of this study is to present an alternative approach for solving the multi-objective posynomial geometric programming problems. The proposed approach minimizes the weighted objective function comes from multi-objective geometric programming problem subject to constraints which constructed by using Kuhn-Tucker Conditions. A new nonlinear problem formed by this approach is solved iteratively. The solution of this approach gives the Pareto optimal solution for the multi-objective posynomial geometric programming problem. To demonstrate the performance of this approach, a problem which was solved with a weighted mean method by Ojha and Biswal (2010) is used. The comparison of solutions between two methods shows that similar results are obtained. In this manner, the proposed approach can be used as an alternative of weighted mean method.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61377091 and61505152)the Pre-research Field Foundation of China(No.6140243010116QT69001)the Applied Basic Research Program of Wuhan,China(No.2017010201010102)
文摘We propose a cavity length demodulation method that combines virtual reference interferometry(VRI) and minimum mean square error(MMSE) algorithm for fiber-optic Fabry–Perot(F-P) sensors. In contrast to the conventional demodulating method that uses fast Fourier transform(FFT) for cavity length estimation,our method employs the VRI technique to obtain a raw cavity length, which is further refined by the MMSE algorithm. As an experimental demonstration, a fiber-optic F-P sensor based on a sapphire wafer is fabricated for temperature sensing. The VRI-MMSE method is employed to interrogate cavity lengths of the sensor under different temperatures ranging from 28°C to 1000°C. It eliminates the "mode jumping" problem in the FFT-MMSE method and obtains a precision of 4.8 nm, corresponding to a temperature resolution of 2.0°C over a range of 1000°C. The experimental results reveal that the proposed method provides a promising, high precision alternative for demodulating fiber-optic F-P sensors.
基金Supported by National Natural Science Foundation of China(Grant No.11171101)National Social Science Fund of China(Grant No.11BTJ011)Research Projects of Humanities and Social Sciences Foundation of Ministry of Education of China(Grant No.12YJAZH173)1)
文摘For a non-Gaussian Levy model, it is shown that if the model exists a trivial arbitrage-free interval, option pricing by mean correcting method is always arbitrage-free, and if the arbitrage-free interval is non-trivial, this pricing method may lead to arbitrage in some cases. In the latter case, some necessary and sufficient conditions under which option price is arbitrage-free are obtained.
文摘Existing far field expressions of second order potentials are by no means complete.Hence there has been no exact far field expression of second order potentials.In this paper the far field expression for Φ_d^((2)) is purposely avoided in deducing the formulae of second order forces and a series of functions Φ_(dRn)^((?)) are used.The far field expression of is given,which for (x,U,z)∈Σ,φ_(dRn)^((2))(?) φ_d^((2)).Using these properties formulae for calculating second order diffraction forces are obtained.To calculate the integral ∫∫_(?)1/g f_(?)Ψ_(?)ds it is divided into two parts.One is the integral over a finite domain and the function under the integral is continuous,so the usual approximate integration formulae may be used. The other is the integral over an infinite domain.Using the far field expression of first order potentials,formulae for calculating the integral to meet given accuracies are given. The mooring force in surge direction is used for comparison between numerical predictions and experimental measurements.The predicted results are checked against the measured value in a specially designed test.In the low frequency domain of interest,the mooring forces in surge,for calculated and experimental spectra are in good consistency so long as the damping coefficients is choosen appropriately.