Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation dete...Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.展开更多
To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may i...To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may influence the accuracy of measurement.On the other hand,the directivity of sound source could induce measurement error.Therefore,a model consisting of two spherical sound sources with approximate omni-directivity and a rigid-spherical head is proposed to evaluate the errors in HRTF measurement caused by multiple scattering between sources.An example of analysis using multipole re-expansion indicates that the error of ipsilateral HRTFs are within the bound of±1.0 dB below a frequency of 20 kHz,provided that the sound source radius does not exceed 0.025 m,the source distance relative to head center is not less than 0.5 m,and the angular interval between two adjacent sources is not less than 20 degrees.Similar conclusions under different conditions can also be analyzed and discussed by using this calculation method.Furthermore,the results are verified by measurements of HRTFs for a rigid sphere and a KEMAR artificial head.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke pa...Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal.展开更多
针对移动终端接入用户和数据的特征难以准确判定,影响移动终端接入控制精准度的问题,提出一种基于EVM(Error Vector Magnitud)测量算法的接入控制技术。考虑到环境中噪声和其他干扰因素影响,以Qos(Quality of Srvice)条件为用户的初始...针对移动终端接入用户和数据的特征难以准确判定,影响移动终端接入控制精准度的问题,提出一种基于EVM(Error Vector Magnitud)测量算法的接入控制技术。考虑到环境中噪声和其他干扰因素影响,以Qos(Quality of Srvice)条件为用户的初始接入条件,计算满足该条件的用户或数据的特征,将特征值转换为权重因子作为接入控制参照。采用EVM测量算法计算终端信道内外信号间的差值,结合用户权重因子推导得到移动终端的接入门限,求解不同用户门限值与控制数值间递增和递减函数,按照函数的优先级顺序,实现移动终端接入的精准控制。实验数据证明,所提方法接入控制精准度高,控制后终端传输时延、阻塞率得到了明显的改善,数据到达率也有明显提升。展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coinci...The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coincides exactly with the planned path, which is usually a plane curve with straight, building, holding, and dropping sections in succession. The drilling direction is of course dependant on the direction of the resultant forces acting on the bit and it is quite a tough job to hit the optimum target at the hole bottom as required. The traditional passive methods for correcting the drilling path have not met the demand to improve the techniques of deviation control. A method for combining wellbore surveys to obtain a composite, more accurate well position relies on accepting the position of the well from the most accurate survey instrument used in a given section of the wellbore. The error in each position measurement is the sum of many independent root sources of error effects. The relationship between surveys and other influential factors is considered, along with an analysis of different points of view. The collaborative work describes, establishes a common starting point of wellbore position uncertainty model, definition of what constitutes an error model, mathematics of position uncertainty calculation and an error model for basic directional service.展开更多
基金supported by the National Key Scientific Instruments to Develop Dedicated(Nos.2013YQ090811 and 2016YFF0103800)
文摘Since the room-temperature detector CdZnTe(CZT) has advantages in terms of detection efficiency,energy resolution, and size, it has been extensively used to detect X-rays and gamma-rays. So far, nuclear radiation detectors such as cerium chloride doped with lanthanum bromide(LaBr_3(Ce)), thallium doped with cesium iodide(sI(Tl)), thallium doped with sodium iodide(NaI(Tl)),and high-purity germanium(HPGe) primarily use the spectroscopy-dose rate function(G(E)) to achieve the accurate measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)). However, the spectroscopy-dose rate function has been rarely measured for a CZT detector. In this study, we performed spectrum measurement using a hemispherical CZT detector in a radiation protection standards laboratory. The spectroscopy-dose rate function G(E) of the CZT detector was calculated using the least-squares method combined with the standard dose rate at the measurement position. The results showed that the hemispherical CZT detector could complete the measurement of air kerma rate(K_a) and ambient dose equivalent rate(H*(10)) by using the G(E) function at energies between 48 keV and 1.25 MeV, and the relative intrinsic errors were, respectively, controlled within ± 2. 3 and ± 2. 1%.
基金funded by National Natural Science Foundation of China(No.11574090)Natural Science Foundation of Guangdong Province(No.2018B030311025).
文摘To accelerate head-related transfer functions(HRTFs)measurement,two or more independent sound sources are usually employed in the measurement system.However,the multiple scattering between adjacent sound sources may influence the accuracy of measurement.On the other hand,the directivity of sound source could induce measurement error.Therefore,a model consisting of two spherical sound sources with approximate omni-directivity and a rigid-spherical head is proposed to evaluate the errors in HRTF measurement caused by multiple scattering between sources.An example of analysis using multipole re-expansion indicates that the error of ipsilateral HRTFs are within the bound of±1.0 dB below a frequency of 20 kHz,provided that the sound source radius does not exceed 0.025 m,the source distance relative to head center is not less than 0.5 m,and the angular interval between two adjacent sources is not less than 20 degrees.Similar conclusions under different conditions can also be analyzed and discussed by using this calculation method.Furthermore,the results are verified by measurements of HRTFs for a rigid sphere and a KEMAR artificial head.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
文摘Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal.
文摘针对移动终端接入用户和数据的特征难以准确判定,影响移动终端接入控制精准度的问题,提出一种基于EVM(Error Vector Magnitud)测量算法的接入控制技术。考虑到环境中噪声和其他干扰因素影响,以Qos(Quality of Srvice)条件为用户的初始接入条件,计算满足该条件的用户或数据的特征,将特征值转换为权重因子作为接入控制参照。采用EVM测量算法计算终端信道内外信号间的差值,结合用户权重因子推导得到移动终端的接入门限,求解不同用户门限值与控制数值间递增和递减函数,按照函数的优先级顺序,实现移动终端接入的精准控制。实验数据证明,所提方法接入控制精准度高,控制后终端传输时延、阻塞率得到了明显的改善,数据到达率也有明显提升。
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.
文摘The deviation control of directional drilling is essentially the controlling of two angles of the wellbore actually drilled, namely, the inclination and azimuth. In directional drilling the bit trajectory never coincides exactly with the planned path, which is usually a plane curve with straight, building, holding, and dropping sections in succession. The drilling direction is of course dependant on the direction of the resultant forces acting on the bit and it is quite a tough job to hit the optimum target at the hole bottom as required. The traditional passive methods for correcting the drilling path have not met the demand to improve the techniques of deviation control. A method for combining wellbore surveys to obtain a composite, more accurate well position relies on accepting the position of the well from the most accurate survey instrument used in a given section of the wellbore. The error in each position measurement is the sum of many independent root sources of error effects. The relationship between surveys and other influential factors is considered, along with an analysis of different points of view. The collaborative work describes, establishes a common starting point of wellbore position uncertainty model, definition of what constitutes an error model, mathematics of position uncertainty calculation and an error model for basic directional service.