This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating ...Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimiza- tion. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.展开更多
Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a v...Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a validated inertial measurement unit(IMU)method for capturing knee RoM was deployed assessing postoperative RoM both in and outside of the clinical setting.The study's objectives were to evaluate the feasibility of continuously capturing knee RoM pre-/post-op via IMUs,dividing data into PT/non-PT portions of each day,and comparing PT/non-PT metrics.We hypothesized IMU-based clinical knee RoM would differ from IMU-based knee RoM captured outside clinical settings.10 patients(3 M,69±13 years)completed informed consent documents following ethics board approval.A validated IMU method captured long duration(8–12 h/day,~50 days)knee RoM pre-/post-op.Post-op metrics were subdivided(PT versus non-PT).Clinical RoM and patient reported outcome measures were also captured.Compliance and clinical disruption were evaluated.ANOVA compared post-op PT and non-PT means and change scores.Maximum flexion during PT was less than outside PT.PT stance/swing RoM and activity level were greater than outside PT.No temporal variable differences were found PT versus non-PT.IMU RoM measurements capture richer information than clinical measures.Maximum PT flexion was likely less than non-PT due to the exercises completed(i.e.high passive RoM vs.low RoM gait).PT gait flexion likely exceed non-PT because of‘white coat effects’wherein patients are closely monitored clinically.This implies data captured clinically represents optimum performance whereas data captured non-clinically represents realistic performance.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced ap...In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.展开更多
Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine ...Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.展开更多
Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GP...Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.展开更多
This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to...This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.展开更多
A new methodology for the detection and identification of insulator arc faults for the smart grid environment based on phasor angle measurements is presented in this study and the real time phase angle data are collec...A new methodology for the detection and identification of insulator arc faults for the smart grid environment based on phasor angle measurements is presented in this study and the real time phase angle data are collected using Phasor Measurement Units (PMU). Detection of insulator arcing faults is based on feature extraction and frequency component analysis. The proposed methodology pertains to the identification of various stages of insulator arcing faults in transmission lines network based on leakage current, frequency characteristics and synchronous phasor measurements of voltage. The methodology is evaluated for IEEE 14 standard bus system by modeling the PMU and insulator arc faults using MATLAB/Simulink. The classification of insulator arcs is done using Support Vector Machine (SVM) technique to avoid empirical risk. The proposed methodology using phasor angle measurements employing PMU is used for fault detection/classification of insulator arcing which further helps in efficient protection of the system and its stable operation. In addition, the methodology is suitable for wide area condition monitoring of smart grid rather than end to end transmission lines.展开更多
This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angl...This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.展开更多
Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and control...Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.展开更多
With the application of phasor measurement units(PMU)in the distribution system,it is expected that the performance of the distribution system state estimation can be improved obviously with the PMU measurements into ...With the application of phasor measurement units(PMU)in the distribution system,it is expected that the performance of the distribution system state estimation can be improved obviously with the PMU measurements into consideration.How to appropriately place the PMUs in the distribution is therefore become an important issue due to the economical consideration.According to the concept of efficient frontier,a value-at-risk based approach is proposed to make optimal placement of PMU taking account of the uncertainty of measure errors,statistical characteristics of the pseudo measurements,and reliability of the measurement instrument.The reasonability and feasibility of the proposed model is illustrated with 12-node system and IEEE-33 node system.Simulation results indicated that uncertainties of measurement error and instrument fault result in more PMU to be installed,and measurement uncertainty is the main affect factor unless the fault rate of PMU is quite high.展开更多
In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accele...In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Sy...When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.展开更多
The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling alg...The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.展开更多
This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be ea...This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.展开更多
This paper presents a new algorithm for de-noising global positioning system (GPS) and inertial navigation system (INS) data and estimates the INS error using wavelet multi-resolution analysis algorithm (WMRA)-b...This paper presents a new algorithm for de-noising global positioning system (GPS) and inertial navigation system (INS) data and estimates the INS error using wavelet multi-resolution analysis algorithm (WMRA)-based genetic algorithm (GA) with a well-designed structure appropriate for practical and real time implementations because of its very short training time and elevated accuracy. Different techniques have been implemented to de-noise and estimate the INS and GPS errors. Wavelet de-noising is one of the most exploited techniques that have been recently used to increase the precision and reliability of the integrated GPS/INS navigation system. To ameliorate the WMRA algorithm, GA was exploited to optimize the wavelet parameters so as to determine the best wavelet filter, thresholding selection rule (TSR), and the optimum level of decomposition (LOD). This results in increasing the robustness of the WMRA algorithm to estimate the INS error. The proposed intelligent technique has overcome the drawbacks of the tedious selection for WMRA algorithm parameters. Finally, the proposed method improved the stability and reliability of the estimated INS error using real field test data.展开更多
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
文摘Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorpor- ating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimiza- tion. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.
基金This was work supported by the National Center for Advancing Translational Sciences of the National Institutes of Health[UL1TR001086].
文摘Total knee arthroplasty is highly successful,in part due to range of motion(RoM)recovery.This is typically estimated goniometrically/visually by physical therapists(PTs)in the clinic,which is imprecise.Accordingly,a validated inertial measurement unit(IMU)method for capturing knee RoM was deployed assessing postoperative RoM both in and outside of the clinical setting.The study's objectives were to evaluate the feasibility of continuously capturing knee RoM pre-/post-op via IMUs,dividing data into PT/non-PT portions of each day,and comparing PT/non-PT metrics.We hypothesized IMU-based clinical knee RoM would differ from IMU-based knee RoM captured outside clinical settings.10 patients(3 M,69±13 years)completed informed consent documents following ethics board approval.A validated IMU method captured long duration(8–12 h/day,~50 days)knee RoM pre-/post-op.Post-op metrics were subdivided(PT versus non-PT).Clinical RoM and patient reported outcome measures were also captured.Compliance and clinical disruption were evaluated.ANOVA compared post-op PT and non-PT means and change scores.Maximum flexion during PT was less than outside PT.PT stance/swing RoM and activity level were greater than outside PT.No temporal variable differences were found PT versus non-PT.IMU RoM measurements capture richer information than clinical measures.Maximum PT flexion was likely less than non-PT due to the exercises completed(i.e.high passive RoM vs.low RoM gait).PT gait flexion likely exceed non-PT because of‘white coat effects’wherein patients are closely monitored clinically.This implies data captured clinically represents optimum performance whereas data captured non-clinically represents realistic performance.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
文摘In the world, recent increased disturbances, congestion management problems, and increases of complexity in operating power systems have brought the need for integrations and improvements of power systems. Advanced applications in WAMPAC (wide area monitoring, protection, and control) systems provide a cost effective solution to improve system planning, operation, maintenance, and energy trading. Synchronized measurement technology and the application are an important element of WAMPAC. In addition, PMUs (phasor measurement units) are the most accurate and advanced time-synchronized technology available for WAMPAC application. Therefore, the original measurement system of PMUs has been constructed in Japan. This paper describes the estimation method of a center of inertia frequency by applying actual measurement data. The application of this method enables us to extract power system oscillations from measurement data appropriately. Moreover, this proposed method will help to the clarification of power system dynamics and this application will make it possible to realize the monitoring of power system oscillations associated with the power system stability.
基金supported by the State Grid Jilin Province Electric Power Co,Ltd-Research and Application of Power Grid Resilience Assessment and Coordinated Emergency Technology of Supply and Network for the Development of New Power System in Alpine Region(Project Number is B32342210001).
文摘Digital twins and the physical assets of electric power systems face the potential risk of data loss and monitoring failures owing to catastrophic events,causing surveillance and energy loss.This study aims to refine maintenance strategies for the monitoring of an electric power digital twin system post disasters.Initially,the research delineates the physical electric power system along with its digital counterpart and post-disaster restoration processes.Subsequently,it delves into communication and data processing mechanisms,specifically focusing on central data processing(CDP),communication routers(CRs),and phasor measurement units(PMUs),to re-establish an equipment recovery model based on these data transmission methodologies.Furthermore,it introduces a mathematical optimization model designed to enhance the digital twin system’s post-disaster monitoring efficacy by employing the branch-and-bound method for its resolution.The efficacy of the proposed model was corroborated by analyzing an IEEE-14 system.The findings suggest that the proposed branch-and-bound algorithm significantly augments the observational capabilities of a power system with limited resources,thereby bolstering its stability and emergency response mechanisms.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.
文摘This paper analyzes the influence of the global positionong system(GPS)spoofing attack(GSA)on phasor measurement units(PMU)measurements.We propose a detection method based on improved Capsule Neural Network(CapsNet)to handle this attack.In the improved CapsNet,the gated recurrent unit(GRU)is added to the front of the full connection layer of the CapsNet.The improved CapsNet trains and updates the network parameters according to the historical measurements of the smart grid.The detection method uses different structures to extract the temporal and spatial features of the measurements simultaneously,which can accurately distinguish the attacked data from the normal data,to improve the detection accuracy.Finally,simulation experiments are carried out on IEEE 14-,IEEE 118-bus systems.The experimental results show that compared with other detection methods,our method is proved to be more efficient.
文摘A new methodology for the detection and identification of insulator arc faults for the smart grid environment based on phasor angle measurements is presented in this study and the real time phase angle data are collected using Phasor Measurement Units (PMU). Detection of insulator arcing faults is based on feature extraction and frequency component analysis. The proposed methodology pertains to the identification of various stages of insulator arcing faults in transmission lines network based on leakage current, frequency characteristics and synchronous phasor measurements of voltage. The methodology is evaluated for IEEE 14 standard bus system by modeling the PMU and insulator arc faults using MATLAB/Simulink. The classification of insulator arcs is done using Support Vector Machine (SVM) technique to avoid empirical risk. The proposed methodology using phasor angle measurements employing PMU is used for fault detection/classification of insulator arcing which further helps in efficient protection of the system and its stable operation. In addition, the methodology is suitable for wide area condition monitoring of smart grid rather than end to end transmission lines.
文摘This paper investigates the effect of the Phase Angle Error of a Constant Amplitude Voltage signal in determining the Total Vector Error (TVE) of the Phasor Measurement Unit (PMU) using MATLAB/Simulink. The phase angle error is measured as a function of time in microseconds at four points on the IEEE 14-bus system. When the 1 pps Global Positioning System (GPS) signal to the PMU is lost, sampling of voltage signals on the power grid is done at different rates as it is a function of time. The relationship between the PMU measured signal phase angle and the sampling rate is established by injecting a constant amplitude signal at two different points on the grid. In the simulation, 64 cycles per second is used as the reference while 24 cycles per second is used to represent the fault condition. Results show that a change in the sampling rate from 64 bps to 24 bps in the PMUs resulted in phase angle error in the voltage signals measured by the PMU at four VI Measurement points. The phase angle error measurement that was determined as a time function was used to determine the TVE. Results show that (TVE) was more than 1% in all the cases.
文摘Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.
基金The author Min Liu received the grant of the National Natural Science Foundation of China(http://www.nsfc.gov.cn/)(51967004).
文摘With the application of phasor measurement units(PMU)in the distribution system,it is expected that the performance of the distribution system state estimation can be improved obviously with the PMU measurements into consideration.How to appropriately place the PMUs in the distribution is therefore become an important issue due to the economical consideration.According to the concept of efficient frontier,a value-at-risk based approach is proposed to make optimal placement of PMU taking account of the uncertainty of measure errors,statistical characteristics of the pseudo measurements,and reliability of the measurement instrument.The reasonability and feasibility of the proposed model is illustrated with 12-node system and IEEE-33 node system.Simulation results indicated that uncertainties of measurement error and instrument fault result in more PMU to be installed,and measurement uncertainty is the main affect factor unless the fault rate of PMU is quite high.
基金Project(61301181) supported by the National Natural Science Foundation of China
文摘In this paper, we integrate inertial navigation system (INS) with wireless sensor network (WSN) to enhance the accuracy of indoor localization. Inertial measurement unit (IMU), the core of the INS, measures the accelerated and angular rotated speed of moving objects. Meanwhile, the ranges from the object to beacons, which are sensor nodes with known coordinates, are collected by time of arrival (ToA) approach. These messages are simultaneously collected and transmitted to the terminal. At the terminal, we set up the state transition models and observation models. According to them, several recursive Bayesian algorithms are applied to producing position estimations. As shown in the experiments, all of three algorithms do not require constant moving speed and perform better than standalone ToA system or standalone IMU system. And within them, two algorithms can be applied for the tracking on any path which is not restricted by the requirement that the trajectory between the positions at two consecutive time steps is a straight line.
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.
基金Supported by the National Basic Research Program (973)of China (No. 2009CB724003)the National High-Tech Research and Development Program (863) of China (No. 2007AA120302)
文摘When using motion compensation approaches based on the measurement of motion sensors, the residual uncompensated motion errors due to measurement instrument inaccuracies contribute to phase errors and hence degrade Synthetic Aperture Radar (SAR) images. This paper presents a model to compute the phase error caused by Inertial Measurement Unit (IMU) measurement inaccuracies. By analyzing SAR motion compensation method and the effect of lever arm, this model derives the con-tribution of each term of IMU inaccuracies towards the residual uncompensated motion errors and provides a method to calculate each order of the residual phase error. According to the model, com-puted results of the airborne X-band SAR system with POS AV510 accord closely with the actual image quality.
文摘The linear coupling of Non-gyro Micro Inertial Measurement Unit (NGMIMU) is akind of system error that affects the accuracy of measurement seriously. In this article, theauthor puts forward a new linear decoupling algorithm which simultaneously considers the error ofstandard input signal and output of accelerators when the coupling parameters are calculated. TheTotal Least Square (TLS) solutions of coupling parameters own the minimum characteristic to theinput and output values. Then these parameters are used to reconstruct the outputs of acceleratorsso as to realize the decoupling. The emulation result show that the ratio of decoupling error isless than 8 percent and verify the feasibility of this algorithm.
基金supported by the Serbian Ministry of Education, Science and Technological Development (Grant 174016)
文摘This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.
基金supported in part by Graduate School of Studies through the Graduate Research Fellowship (GRF) sponsored by University Putra Malaysia
文摘This paper presents a new algorithm for de-noising global positioning system (GPS) and inertial navigation system (INS) data and estimates the INS error using wavelet multi-resolution analysis algorithm (WMRA)-based genetic algorithm (GA) with a well-designed structure appropriate for practical and real time implementations because of its very short training time and elevated accuracy. Different techniques have been implemented to de-noise and estimate the INS and GPS errors. Wavelet de-noising is one of the most exploited techniques that have been recently used to increase the precision and reliability of the integrated GPS/INS navigation system. To ameliorate the WMRA algorithm, GA was exploited to optimize the wavelet parameters so as to determine the best wavelet filter, thresholding selection rule (TSR), and the optimum level of decomposition (LOD). This results in increasing the robustness of the WMRA algorithm to estimate the INS error. The proposed intelligent technique has overcome the drawbacks of the tedious selection for WMRA algorithm parameters. Finally, the proposed method improved the stability and reliability of the estimated INS error using real field test data.