The effect of the presence of trace SO_(2)in industrial flue gas on the amine-scrubbing-based absorption process for CO_(2)capture has been a matter of concern.This study aimed to investigate the effect of trace SO_(2...The effect of the presence of trace SO_(2)in industrial flue gas on the amine-scrubbing-based absorption process for CO_(2)capture has been a matter of concern.This study aimed to investigate the effect of trace SO_(2)on the CO_(2)capture process using piperazine-based amine absorbents,focusing on SO_(2)-resistance capability,SO_(2)/CO_(2)absorption selectivity,and cyclic stability.The presence of trace SO_(2)not only restrains CO_(2)absorption,but also promotes the formation of carbamate within the piperazine-based amine absorbents.Remarkably,the incorporation of aminoethyl group in piperazine-based amine absorbents can enhance the SO_(2)-resistance capability by promoting the formation of carbamate,while piperazine-based amine absorbents with hydroxyethyl group can promote the formation of bicarbonate to reduce the SO_(2)-resistance capability.The work offers valuable insights into the efficient application of novel amine absorbents for CO_(2)capture from practical industrial flue gas.展开更多
Estimating the impacts on PM_(2.5)pollution and CO_(2)emissions by human activities in different urban regions is important for developing efficient policies.In early 2020,China implemented a lockdown policy to contai...Estimating the impacts on PM_(2.5)pollution and CO_(2)emissions by human activities in different urban regions is important for developing efficient policies.In early 2020,China implemented a lockdown policy to contain the spread of COVID-19,resulting in a significant reduction of human activities.This event presents a convenient opportunity to study the impact of human activities in the transportation and industrial sectors on air pollution.Here,we investigate the variations in air quality attributed to the COVID-19 lockdown policy in the megacities of China by combining in-situ environmental and meteorological datasets,the Suomi-NPP/VIIRS and the CO_(2)emissions from the Carbon Monitor project.Our study shows that PM_(2.5)concentrations in the spring of 2020 decreased by 41.87%in the Yangtze River Delta(YRD)and 43.30%in the Pearl River Delta(PRD),respectively,owing to the significant shutdown of traffic and manufacturing industries.However,PM_(2.5)concentrations in the Beijing-Tianjin-Hebei(BTH)region only decreased by 2.01%because the energy and steel industries were not fully paused.In addition,unfavorable weather conditions contributed to further increases in the PM_(2.5)concentration.Furthermore,CO_(2)concentrations were not significantly affected in China during the short-term emission reduction,despite a 19.52%reduction in CO_(2)emissions compared to the same period in 2019.Our results suggest that concerted efforts from different emission sectors and effective long-term emission reduction strategies are necessary to control air pollution and CO_(2)emissions.展开更多
Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with...Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with the size down to<1μm sometimes),and record critical physical-chemical signals for the formations of their host minerals.Spectroscopic methods like Raman spectroscopy and infrared spectroscopy have been proposed as effective methods to quantify the carbonate concentrations of these fluid inclusions.Although they have some great technical advantages over the conventional microthermometry method,there are still some technical difficulties to overcome before they can be routinely used to solve relevant geological problems.The typical limitations include their interlaboratory difference and poor performance on micro fluid inclusions.This study prepared standard ion-distilled water and K_(2)CO_(3)aqueous solutions at different molarities(from 0.5 to 5.5 mol/L),measured densities,collected Raman and infrared spectra,and explored correlations between the K_(2)CO_(3)molarity and the spectroscopic features at ambient P-T conditions.The result confirms that the Raman O-H stretching mode can be used as an internal standard to determine the carbonate concentrations despite some significant differences among the correlations,established in different laboratories,between the relative Raman intensity of the C-O symmetric stretching mode and that of the O-H stretching mode.It further reveals that the interlaboratory difference can be readily removed by performing one high-quality calibration experiment,provided that later quantifying analyses are conducted using the same Raman spectrometer with the same analytical conditions.Our infrared absorption data were collected from thin fluid films(thickness less than~2μm)formed by pressing the prepared solutions in a Microcompression Cell with two diamond-II plates.The data show that both the O-H stretching mode and the O-H bending mode can be used as internal standards to determine the carbonate concentrations.Since the IR signals of the C-O antisymmetric stretching vibration of the CO32ion,and the O-H stretching and bending vibrations from our thin films are very strong,their relative IR absorbance intensity,if well calibrated,can be used to investigate the micron-sized carbonate-bearing aqueous fluid inclusions.This study establishes the first calibration of this kind,which may have some applications.Additionally,our spectroscopic data suggest that as the K_(2)CO_(3)concentration increases the aqueous solution forms more large water molecule clusters via more intense hydrogen-bonding.This process may significantly alter the physical and chemical behavior of the fluids.展开更多
Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-...Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-butoxyethanol(2-BE)has been recently proposed for low-energyconsumption CO_(2) capture.In this work,Henry’s law constants of CO_(2) in the BAE/2-BE blend were obtained by N_(2)O/CO_(2) analogy,and correlated in the temperature range of(283–333)K.Vapor-liquid equilibrium(VLE)data for the BAE+CO_(2)+2-BE system at 65.4%(mass)BAE were also determined in a stirred equilibrium cell at temperatures of(313–393)K and CO_(2) partial pressures up to 275 kPa.A single apparent equilibrium constant KCO_(2);app was proposed for this system and correlated as a function of temperature,carbonated degree of amine and CO_(2) loading.Solubility data were well represented by the modified Kent-Eisenberg model with an average absolute relative deviation(AARD)of 13%.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
The co-removal of CO_(2)while removing SO_(2)and NOxfrom industrial flue gas has great potential of carbon emission reduction but related research is lacking.In this study,a wet scrubbing process with various urea sol...The co-removal of CO_(2)while removing SO_(2)and NOxfrom industrial flue gas has great potential of carbon emission reduction but related research is lacking.In this study,a wet scrubbing process with various urea solutions for desulfurization and denitrification was explored for the possibility of CO_(2)absorption.The results showed that the urea-additive solutions were efficient for NOxand SO_(2)abatement,but delivered<10%CO_(2)absorption efficiency.The addition of Ca(OH)_(2)dramatically enhanced the CO_(2)absorption,remained the desulfurization efficiency,unfortunately restricted the denitrification efficiency.Among various operating parameters,pH of solution played a determining role during the absorption.The contradictory pH demands of CO_(2)absorption and denitrification were observed and discussed in detail.A higher pH of solution than 10 was favorable for CO_(2)absorption,while the oxidizing of NO to NO_(2),NO_(2)^(-)or NO_(3)^(-)by NaClO_(2)was inhibited in this condition.When7<pH<10,it was favorable for the conversion and absorption of NO and NOx.However,the conversion of HCO_(3)^(-)to CO_(3)^(2-)was significantly inhibited,hence preventing the absorption of CO_(2).Large part of Ca(OH)_(2)became CaCO_(3)with a finer particle size,which covered the unreacted Ca(OH)_(2)surface after the reaction.Kinetic analysis showed that the CO_(2)absorption in urea-NaClO_(2)-Ca(OH)_(2)absorbent was controlled by chemical reaction in early stage,then by ash layer diffusion in later stage.展开更多
In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments...In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.展开更多
基金supported by the Major Science and Technology Project of Anhui Province(201903a07020004)the National Natural Science Foundation of China(22208078)the Fundamental Research Funds for the Central Universities(JZ2023HGTB0226).
文摘The effect of the presence of trace SO_(2)in industrial flue gas on the amine-scrubbing-based absorption process for CO_(2)capture has been a matter of concern.This study aimed to investigate the effect of trace SO_(2)on the CO_(2)capture process using piperazine-based amine absorbents,focusing on SO_(2)-resistance capability,SO_(2)/CO_(2)absorption selectivity,and cyclic stability.The presence of trace SO_(2)not only restrains CO_(2)absorption,but also promotes the formation of carbamate within the piperazine-based amine absorbents.Remarkably,the incorporation of aminoethyl group in piperazine-based amine absorbents can enhance the SO_(2)-resistance capability by promoting the formation of carbamate,while piperazine-based amine absorbents with hydroxyethyl group can promote the formation of bicarbonate to reduce the SO_(2)-resistance capability.The work offers valuable insights into the efficient application of novel amine absorbents for CO_(2)capture from practical industrial flue gas.
基金supported by the National Science Foundation of China(Grant.No.41521004)the Gansu Provincial Special Fund Project for Guiding Scientific and Technological Innovation and Development(Grant No.2019ZX-06)the Fundamental Research Funds for the Central Universit-ies(lzujbky-2021-kb12)。
文摘Estimating the impacts on PM_(2.5)pollution and CO_(2)emissions by human activities in different urban regions is important for developing efficient policies.In early 2020,China implemented a lockdown policy to contain the spread of COVID-19,resulting in a significant reduction of human activities.This event presents a convenient opportunity to study the impact of human activities in the transportation and industrial sectors on air pollution.Here,we investigate the variations in air quality attributed to the COVID-19 lockdown policy in the megacities of China by combining in-situ environmental and meteorological datasets,the Suomi-NPP/VIIRS and the CO_(2)emissions from the Carbon Monitor project.Our study shows that PM_(2.5)concentrations in the spring of 2020 decreased by 41.87%in the Yangtze River Delta(YRD)and 43.30%in the Pearl River Delta(PRD),respectively,owing to the significant shutdown of traffic and manufacturing industries.However,PM_(2.5)concentrations in the Beijing-Tianjin-Hebei(BTH)region only decreased by 2.01%because the energy and steel industries were not fully paused.In addition,unfavorable weather conditions contributed to further increases in the PM_(2.5)concentration.Furthermore,CO_(2)concentrations were not significantly affected in China during the short-term emission reduction,despite a 19.52%reduction in CO_(2)emissions compared to the same period in 2019.Our results suggest that concerted efforts from different emission sectors and effective long-term emission reduction strategies are necessary to control air pollution and CO_(2)emissions.
基金the DREAM project of MOST,China(Grant No.2016YFC0600408)the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB18000000)the Program of the National Mineral Rock and Fossil Specimens Resource Center from MOST,China.
文摘Carbonate-bearing fluids widely exist in different geological settings,and play important roles in transporting some elements such as the rare earth elements.They may be trapped as large or small fluid inclusions(with the size down to<1μm sometimes),and record critical physical-chemical signals for the formations of their host minerals.Spectroscopic methods like Raman spectroscopy and infrared spectroscopy have been proposed as effective methods to quantify the carbonate concentrations of these fluid inclusions.Although they have some great technical advantages over the conventional microthermometry method,there are still some technical difficulties to overcome before they can be routinely used to solve relevant geological problems.The typical limitations include their interlaboratory difference and poor performance on micro fluid inclusions.This study prepared standard ion-distilled water and K_(2)CO_(3)aqueous solutions at different molarities(from 0.5 to 5.5 mol/L),measured densities,collected Raman and infrared spectra,and explored correlations between the K_(2)CO_(3)molarity and the spectroscopic features at ambient P-T conditions.The result confirms that the Raman O-H stretching mode can be used as an internal standard to determine the carbonate concentrations despite some significant differences among the correlations,established in different laboratories,between the relative Raman intensity of the C-O symmetric stretching mode and that of the O-H stretching mode.It further reveals that the interlaboratory difference can be readily removed by performing one high-quality calibration experiment,provided that later quantifying analyses are conducted using the same Raman spectrometer with the same analytical conditions.Our infrared absorption data were collected from thin fluid films(thickness less than~2μm)formed by pressing the prepared solutions in a Microcompression Cell with two diamond-II plates.The data show that both the O-H stretching mode and the O-H bending mode can be used as internal standards to determine the carbonate concentrations.Since the IR signals of the C-O antisymmetric stretching vibration of the CO32ion,and the O-H stretching and bending vibrations from our thin films are very strong,their relative IR absorbance intensity,if well calibrated,can be used to investigate the micron-sized carbonate-bearing aqueous fluid inclusions.This study establishes the first calibration of this kind,which may have some applications.Additionally,our spectroscopic data suggest that as the K_(2)CO_(3)concentration increases the aqueous solution forms more large water molecule clusters via more intense hydrogen-bonding.This process may significantly alter the physical and chemical behavior of the fluids.
基金supported by Natural Science Foundation of Hebei Province(B2018208154)Department of Education of Hebei Province,P.R.China(SLRC2019051)Key Foundation of Hebei Provincial Department of Science and Technology,P.R.China(21373703D).
文摘Nonaqueous amine-based system is an attractive solution to overcome high-energy-intensive CO_(2) capture process using the conventional aqueous amines.Advanced nonaqueous absorbent of 2-(butylamino)ethanol(BAE)with 2-butoxyethanol(2-BE)has been recently proposed for low-energyconsumption CO_(2) capture.In this work,Henry’s law constants of CO_(2) in the BAE/2-BE blend were obtained by N_(2)O/CO_(2) analogy,and correlated in the temperature range of(283–333)K.Vapor-liquid equilibrium(VLE)data for the BAE+CO_(2)+2-BE system at 65.4%(mass)BAE were also determined in a stirred equilibrium cell at temperatures of(313–393)K and CO_(2) partial pressures up to 275 kPa.A single apparent equilibrium constant KCO_(2);app was proposed for this system and correlated as a function of temperature,carbonated degree of amine and CO_(2) loading.Solubility data were well represented by the modified Kent-Eisenberg model with an average absolute relative deviation(AARD)of 13%.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
基金supported by the National Key Research and Development Plan of China (Nos.2019YFC0214300 and 2020YFF0408886)the Central Public-interest Scientific Institution Basal Research Fund of China (Nos.PM-zx703-202104059,PM-zx703-202104-087,and PM-zx703-202204-159)the Project of Science and Technology Program of Guangzhou,China (No.202102020135)。
文摘The co-removal of CO_(2)while removing SO_(2)and NOxfrom industrial flue gas has great potential of carbon emission reduction but related research is lacking.In this study,a wet scrubbing process with various urea solutions for desulfurization and denitrification was explored for the possibility of CO_(2)absorption.The results showed that the urea-additive solutions were efficient for NOxand SO_(2)abatement,but delivered<10%CO_(2)absorption efficiency.The addition of Ca(OH)_(2)dramatically enhanced the CO_(2)absorption,remained the desulfurization efficiency,unfortunately restricted the denitrification efficiency.Among various operating parameters,pH of solution played a determining role during the absorption.The contradictory pH demands of CO_(2)absorption and denitrification were observed and discussed in detail.A higher pH of solution than 10 was favorable for CO_(2)absorption,while the oxidizing of NO to NO_(2),NO_(2)^(-)or NO_(3)^(-)by NaClO_(2)was inhibited in this condition.When7<pH<10,it was favorable for the conversion and absorption of NO and NOx.However,the conversion of HCO_(3)^(-)to CO_(3)^(2-)was significantly inhibited,hence preventing the absorption of CO_(2).Large part of Ca(OH)_(2)became CaCO_(3)with a finer particle size,which covered the unreacted Ca(OH)_(2)surface after the reaction.Kinetic analysis showed that the CO_(2)absorption in urea-NaClO_(2)-Ca(OH)_(2)absorbent was controlled by chemical reaction in early stage,then by ash layer diffusion in later stage.
基金supported by the National Key Research and Development Plan(Grant No.2021YFB3901000)the Chinese Academy of Sciences Project for Young Scientists in Basic Research(YSBR-037)+2 种基金the International Partnership Program of the Chinese Academy of Sciences(060GJHZ2022070MI)the MOST-ESA Dragon-5 Programme for Monitoring Greenhouse Gases from Space(ID.59355)the Finland–China Mobility Cooperation Project funded by the Academy of Finland(No.348596)。
文摘In this study,we introduce our newly developed measurement-fed-perception self-adaption Low-cost UAV Coordinated Carbon Observation Network(LUCCN)prototype.The LUCCN primarily consists of two categories of instruments,including ground-based and UAV-based in-situ measurement.We use the GMP343,a low-cost non-dispersive infrared sensor,in both ground-based and UAV-based instruments.The first integrated measurement campaign took place in Shenzhen,China,4 May 2023.During the campaign,we found that LUCCN’s UAV component presented significant data-collecting advantages over its ground-based counterpart owing to the relatively high altitudes of the point emission sources,which was especially obvious at a gas power plant in Shenzhen.The emission flux was calculated by a crosssectional flux(CSF)method,the results of which differed from the Open-Data Inventory for Anthropogenic Carbon dioxide(ODIAC).The CSF result was slightly larger than others because of the low sampling rate of the whole emission cross section.The LUCCN system will be applied in future carbon monitoring campaigns to increase the spatiotemporal coverage of carbon emission information,especially in scenarios involving the detection of smaller-scale,rapidly varying sources and sinks.