Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current met...Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media展开更多
Aspheric surfaces are widely used in advanced optical instruments.Measuring the aspheric surface parameters(ASPs)with high accuracy is vital for manufacturing and aligning optical aspheric surfaces.This paper provides...Aspheric surfaces are widely used in advanced optical instruments.Measuring the aspheric surface parameters(ASPs)with high accuracy is vital for manufacturing and aligning optical aspheric surfaces.This paper provides a review of various techniques for measuring ASPs and discusses the advantages/disadvantages of these approaches.The aim of this review is to contribute to advancements in the fabrication and testing of aspheric optical elements and their practical applications in diverse fields.展开更多
Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as pre...Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.展开更多
The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of p...The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.展开更多
A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and sing...A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.展开更多
The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively ...The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.展开更多
Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error...Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.展开更多
Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer...Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.展开更多
Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the a...Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.展开更多
In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux densi...In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.展开更多
By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When a...By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When an unlimited extensive incubation period with zero creep rate oc-curred. the stress cavsing zero creep rate is defined as fatigue-creep resistance. The developped test-ing technique was used to measure the fatigue-creep resistance in F anc C regions. The dynamic ef-fective stress could yield a better descrption of fatigue and creep interaction. The fatigue-creep rateequations with varied exponents inF of C region are established. The different deformation mecha-nisms in F or C regions are indicated展开更多
A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted....A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.展开更多
The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been appl...The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.展开更多
The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experimen...The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experiment can contribute to understanding scientific concepts of high school students, specifically in physics. Five public high-schools located in the urban area of Guaratingueta were selected for our pilot test. Only one of the schools has a science laboratory, which is often not used due to the shortage of appropriate material for experiments. However, all five schools have computer labs with internet access. Authors worked with a total of 335 students from five schools. Authors' pilot test began with theoretical classes, related to the experiment, given by the teachers of each school: Concept of Magnetic Induction Field and the Biot-Savart Law. The classes were followed by a pre-test. After applying the pre-test, the students accessed the experimental activity via Interact remote access in the computer lab. At the end of the experimental activity, the students completed the multiple choice post-tests. All students completed the post-tests. The pre-test and post-test analysis has been used as an assessment method in education and social sciences.展开更多
Examples of changes in the magnitude of the <b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;"><span style="font-family:Verda...Examples of changes in the magnitude of the <b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">-</span></b></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">field after the heliosphere termination shock (TS) with both Voyager spacecraft (SC) are presented. The work focuses on similarities and differences in the observations at their </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> measurements along divergent paths. The presented results were collected where the accuracy of the magnetometer is the highest. These locations are those wherein, four to seven times during the year, the SC performs about 330 minutes of slow rotations identified in the SC language as MAGROLs. They are next reviewed, with the understanding that after the TS, at MAGROLs, the solar wind (SW) flows appear to be mostly sub-magnetosonic and compressional in this region, region named helio-sheath (HS). This is a preliminary survey that uses </span><span style="font-family:Verdana;">48 sec</span> <b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;">-field averages. The time-intervals in this work fill gaps in the currently available studies for longer time intervals. The present study reinforces the view that in the HS after the TS the SW is most likely strongly compressional. </span><span style="font-family:Verdana;">Further</span><span style="font-family:Verdana;"> we discuss the fact that observed fluctuation intensity-modes of the </span><b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;">-field in our time-ranges appear to be much more pronounced at the Voyager 2 path than at the Voyager 1 path.</span></span></span></span>展开更多
Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analyticall...Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analytically solving the forward problem for a particular two-component pow. The physical mechanisms within the sensor and the detectability limits of the EMT technique were quantitatively analyzed. Direct mathematical expressions for the field sensitivity and the sensitivity maps were established. To a certain extent, mathematical and theoretical bares are given for quantitative design of the sensor, detectability analysis of the EMT technique and image reconstruction of two-component processes based on the linear back-projection algorithm.展开更多
Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in sit...Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in situ and real-time monitoring of film growth,including spectral resolution and sensitivity at the level of monolayers and even sub-monolayers,the most challenging technical task in DRS is to reduce noise to an extremely low level so that the best possible signal-to-noise ratio can be achieved.In this paper,we present a simplified and cost-effective DRS apparatus,with which we show that the measurement noise is mainly composed of thermal drift noise and explore the temperature-dependence of the DRS signal.Based on the results obtained,we propose an easily realized and effective scheme aiming to reduce the noise.Experimental results demonstrate that this scheme is effective in stabilizing reliable signals for a long period of several hours.Significant noise reduction is achieved,with the typical average noise of the DRS system being decreased to 0.05%over several hours.The improved DRS system is applied to study the growth of an organic semiconductor layer for an organic field-effect transistor device.The results indicate that the apparatus proposed in this paper has potential applications in fabrication of devices on the nanoscale and even the sub-nanoscale.展开更多
On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system...On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.展开更多
To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and fl...To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and flow field measurement is presented. Results of different kinds of experiments show that the hydrodynamic characteristics can affect sludge characteristics,mass transfer and reactor performance significantly. Along with the development of theoretical equations,turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numerical simulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrodynamics very well.展开更多
On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real tim...On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).展开更多
文摘Electrochemical techniques of the corrosion measurements of reinforcing steeI in concrete have been evaluated. These techniques include half-cell potential measurements, impressed voltage method, impressed current method and potentiostatic polarization technique. The results of corrosion behaviour of the steel in both 5%NaCl and 5%MgSO4 show that each electrochemical technique provides some information about the condition of the steel bar or the corrosivity of the environment being evaluated, yet none provides a complete data regarding the corrosion resistance of reinforcing steel in aggressive media
基金National Key Research and Development Program of China(2021YFC2202404)National Natural Science Foundation of China(51735002)Strategic Priority Program of Chinese Academy of Science(XDA25020317).
文摘Aspheric surfaces are widely used in advanced optical instruments.Measuring the aspheric surface parameters(ASPs)with high accuracy is vital for manufacturing and aligning optical aspheric surfaces.This paper provides a review of various techniques for measuring ASPs and discusses the advantages/disadvantages of these approaches.The aim of this review is to contribute to advancements in the fabrication and testing of aspheric optical elements and their practical applications in diverse fields.
文摘Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.
文摘The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.
文摘A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.
基金This work was supported by the National Key R&D program of China(No.2016YFA0400504)by the National Natural Science Foundation of China(Nos.U1832211,U1867210,11922501,11961141004,11575018,11790322,and U1932209).
文摘The LaBr3(Ce)detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency.However,it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum,actinium,and their daughter nuclei.This limits its applications in low-counting rate experiments.In this study,we identified the radioactive isotopes in theφ3"x 3"Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system.Moreover,we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components.The total activity of the background radiation of B380 is determined to be 1.523(34)Bq/cm^3.The main sources include 138La at 1.428(34)Bq/cm^3,207Tl at 0.0135(13)Bq/cm^3,211Bi at 0.0136(15)Bq/cm^3,215Po at 0.0135(3)Bq/cm^3,219Rn at 0.0125(12)Bq/cm^3,223Fr at 0.0019(11)Bq/cm^3,223Ra at 0.0127(10)Bq/cm^3,227Th at 0.0158(22)Bq/cm^3,and 227Ac at 0.0135(13)Bq/cm^3.Of these,the activities of 207Tl,211Po,215Po,223Fr,and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.
文摘Quasi-longitudinal waves are one type of structural waves, which are important at high frequencies. This paper studies the estimate theory and measurement technique of quasi-longitudinal waves, analyzes the bias error due to the effect of bending waves. In a two-dimensional quasi-longitudinal wave held, the intensity vector is the sum of the effective intensity vector and the intensity variation vector. Its axial component is proportional to two imaginary parts of cross spectral densities and in the measurement, it is measured by a pair of two-transducer arrays. In a one-dimensional quasi-longitudinal wave field, the intensity variation is zero, the intensity is proportional to only one imaginary part of a cross spectral density and it can be measured using a two-transducer array. If bending and quasi-longitudinal waves coexist and the contribution from bending waves cannot be eliminated or reduced to a certain extent, the measured quasi-longitudinal wave intensity will contain a large error. The results measured on the three-beam structure show that quasi-longitudinal wave intensity can be accurately measured using the intensity technique when bending waves are negligible in comparison with quasi-longitudinal waves.
文摘Cloudy bands are typical stratigraphic structure in deep ice core. Detailed recording of cloudy bands is important for dating of ice core since pair of series cloudy band and clear layer is corresponds to annual layer and it sometimes corresponds to volcanic ash layer. We developed two type scanners, transmitted light method and laser tomograph method for the stratigraphic study. Measurements were carried out for NGRIP deep ice core, which containing many cloudy bands, using the two type scanners and digital camera. We discussed about the possibility of identification of cloudy bands by each method and about advantage and disadvantage of measurements and their results.
文摘Using the Differential Absorption Lidar (DIAL) technique, two types of approaches, namely, reflection from retroreflector / topographic target and backscatter from atmosphere, are available for studying remotely the atmospheric NO, concentration. The Argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India has been used for the measurements by following both the path-averaged and range-resolved approaches. For the former, a topographic target (hill) is used for determining path-averaged surface concentration. In the latter, spectral properties of atmospheric attenuation is used for making range-resolved measurements in the surface layer. The results of the observations collected by following both approaches are presented. The average surface NO2 concentration was found to vary between 0.01 and 0.105 ppm and the range-resolved measurements exhibited higher values suggesting treatment of the lidar data for scattering and extinction effects due to atmospheric aerosols and air molecules, and atmospheric turbulence. Certain modifications that are suggested to the experimental set-up, data acquisition and analysis to improve the measurements are briefly described.
文摘In many situations such as the cores of a rotating electrical machine and the T joints of a multiphase transformer, the local flux density varies with time in terms of both magnitude and direction, i.e. the flux density vector is rotating. Therefore, the magnetic properties of the core materials under the rotating flux density vector excitation should be properly measured, modeled and applied in the design and analysis of these electromagnetic devices. This paper presents an extensive review on the development of techniques and apparatus for measuring the rotational core losses of soft magnetic materials based on the experiences of various researchers in the last hundred years.
文摘By using dropped stress creep method a new testing technique for measurement of the fa-tigue-creep interaction resistance is developed. At varied adjusted mean stresses the creep testingwas performed repeatedly When an unlimited extensive incubation period with zero creep rate oc-curred. the stress cavsing zero creep rate is defined as fatigue-creep resistance. The developped test-ing technique was used to measure the fatigue-creep resistance in F anc C regions. The dynamic ef-fective stress could yield a better descrption of fatigue and creep interaction. The fatigue-creep rateequations with varied exponents inF of C region are established. The different deformation mecha-nisms in F or C regions are indicated
文摘A new type of impulsive microthruster and its measurement system were designed for the aim of testing the performance of a basic prototype of solid propellant impulsive microthruster. Two sets of tests were conducted. The tests show that the ignitor and the main charge of the microthruster match well, the dynamic and static capability of the test and measurement meets the test requirement and the result is creditable. The measured technical characteristics of the microthruster are that the ignition delay time is shorter than 0 3?ms, the total impulse is over 3?N·s, the operational time is shorter than 16?ms and the mass ratio of the thruster is 0 216.
基金the funding from National Science Fund for Distinguished Young Scholars of the NaturalScience Foundation of China (40225003)the Knowledge Innovation Project of the Chinese Academy of Science(KZCX3-SW-341)
文摘The velocity of blown sand particles is an important parameter in aeolian movement (a special case of gas particle two-phase flow) and has ever been a topic of interest. At present, several techniques have been applied in measuring velocity of the blown sand particles. This paper reviews the measurement results of several commonly used methods: photoelectric cell method, high-speed photographic method, Particle Dynamics Analyzer (PDA) method and Particle Image Velocimetry (PIV) method. Photoelectric cell method, high-speed photograph method and PDA method are useful in studying the velocity distribution of particles. PIV is a whole-flow-field technique and a useful tool to study the average velocity field in a target area. These methods got some similar results but considerable differences also exist. They have come to similar conclusions on the velocity distributions at a single height but direct measurement results with respect to the velocity distribution very close to the surface are still scarce except some PDA results. The magnitude of measured mean particle velocity differs greatly. The relationship obtained by different methods between mean particle velocity and wind velocity, particle size and possibly other influencing factors also differs considerably. Although several authors have proposed similar power functions to describe the variation with height of the mean particle velocity, the predicted results have wide differences. Each technique is based on some unique principles, and has its advantages and disad- vantages. To make full use of different techniques, a lot of work needs be done to validate them. Developing a reliable technique to measure the velocity of blown particles is still a necessary task in aeolian research.
文摘The objective of authors' study was to assess the effect of using the remote Tangent Galvanometer experiment on teaching and leaming physics in high-school classes. The idea was to understand how the remote experiment can contribute to understanding scientific concepts of high school students, specifically in physics. Five public high-schools located in the urban area of Guaratingueta were selected for our pilot test. Only one of the schools has a science laboratory, which is often not used due to the shortage of appropriate material for experiments. However, all five schools have computer labs with internet access. Authors worked with a total of 335 students from five schools. Authors' pilot test began with theoretical classes, related to the experiment, given by the teachers of each school: Concept of Magnetic Induction Field and the Biot-Savart Law. The classes were followed by a pre-test. After applying the pre-test, the students accessed the experimental activity via Interact remote access in the computer lab. At the end of the experimental activity, the students completed the multiple choice post-tests. All students completed the post-tests. The pre-test and post-test analysis has been used as an assessment method in education and social sciences.
文摘Examples of changes in the magnitude of the <b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;"><span style="font-family:Verdana;"><b><span style="font-family:Verdana;">-</span></b></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">field after the heliosphere termination shock (TS) with both Voyager spacecraft (SC) are presented. The work focuses on similarities and differences in the observations at their </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> measurements along divergent paths. The presented results were collected where the accuracy of the magnetometer is the highest. These locations are those wherein, four to seven times during the year, the SC performs about 330 minutes of slow rotations identified in the SC language as MAGROLs. They are next reviewed, with the understanding that after the TS, at MAGROLs, the solar wind (SW) flows appear to be mostly sub-magnetosonic and compressional in this region, region named helio-sheath (HS). This is a preliminary survey that uses </span><span style="font-family:Verdana;">48 sec</span> <b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;">-field averages. The time-intervals in this work fill gaps in the currently available studies for longer time intervals. The present study reinforces the view that in the HS after the TS the SW is most likely strongly compressional. </span><span style="font-family:Verdana;">Further</span><span style="font-family:Verdana;"> we discuss the fact that observed fluctuation intensity-modes of the </span><b><span style="font-family:Verdana;">B</span></b><span style="font-family:Verdana;">-field in our time-ranges appear to be much more pronounced at the Voyager 2 path than at the Voyager 1 path.</span></span></span></span>
文摘Inductance-bared electromagnetic tomography (EMT) is a novel industrial process tomographic technique. Exact expressions of the magnetic field distribution in a two-dimensional object space were derived by analytically solving the forward problem for a particular two-component pow. The physical mechanisms within the sensor and the detectability limits of the EMT technique were quantitatively analyzed. Direct mathematical expressions for the field sensitivity and the sensitivity maps were established. To a certain extent, mathematical and theoretical bares are given for quantitative design of the sensor, detectability analysis of the EMT technique and image reconstruction of two-component processes based on the linear back-projection algorithm.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2017YFF0107003).
文摘Differential reflectance spectroscopy(DRS)is a powerful tool to study processes during thin-film growth,especially that of transition metal dichalcogenides and organic thin films.To satisfy the requirements for in situ and real-time monitoring of film growth,including spectral resolution and sensitivity at the level of monolayers and even sub-monolayers,the most challenging technical task in DRS is to reduce noise to an extremely low level so that the best possible signal-to-noise ratio can be achieved.In this paper,we present a simplified and cost-effective DRS apparatus,with which we show that the measurement noise is mainly composed of thermal drift noise and explore the temperature-dependence of the DRS signal.Based on the results obtained,we propose an easily realized and effective scheme aiming to reduce the noise.Experimental results demonstrate that this scheme is effective in stabilizing reliable signals for a long period of several hours.Significant noise reduction is achieved,with the typical average noise of the DRS system being decreased to 0.05%over several hours.The improved DRS system is applied to study the growth of an organic semiconductor layer for an organic field-effect transistor device.The results indicate that the apparatus proposed in this paper has potential applications in fabrication of devices on the nanoscale and even the sub-nanoscale.
基金Supported by National Natural Science Foundation of China (No.50505031)Tianjin Municipal Science and Technology Commission(No.043185911)Programfor NewCentury Excellent Talents in University
文摘On account of the multiformity of MEMS devices, it is necessary to integrate with some optical measurement techniques for meeting static and dynamic unit test requirements. In this paper, an automated MEMS test system is built of some commercially available components and instruments based on virtual instrument technology. The system is integrated with stroboscopic imaging, computer micro-vision, microscopic Mirau phase shifting interferometry, and laser Doppler vibrometer, and is used for the measurement of full-view in-plane and out-of-plane geometric parameters and periodical motions and single spot out-of-plane transient motion. The system configuration and measurement methods are analyzed, and some applications of the measurement of in-plane and out-of-plane dimensions and motions were described. The measurement accuracy of in-plane dimensions and out-of-plane dimensional is better than 0.2 um and 5 nm respectively. The resolution of measuring in-plane and out-of-plane motions is better than 15 nm and 2 nm respectively.
基金Sponsored by the National Basic Research Program of China( 973 Program)(Grant No.G2000026402)
文摘To optimize the design and improve the performance of wastewater treatment bioreactors,the review concerning the hydrodynamics explored by theoretical equations,process experiments,modeling of the hydrodynamics and flow field measurement is presented. Results of different kinds of experiments show that the hydrodynamic characteristics can affect sludge characteristics,mass transfer and reactor performance significantly. Along with the development of theoretical equations,turbulence models including large eddy simulation models and Reynolds-averaged Navier-Stokes (RANS) models are widely used at present. Standard and modified k-ε models are the most widely used eddy viscosity turbulence models for simulating flows in bioreactors. Numerical simulation of hydrodynamics is proved to be efficient for optimizing design and operation. The development of measurement techniques with high accuracy and low intrusion enables the flow filed in the bioreactors to be transparent. Integration of both numerical simulation and experimental measurement can describe the hydrodynamics very well.
基金supported by the National Natural Science Foundation of China(No.41805105)。
文摘On-line chemical characterization of atmospheric particulate matter(PM)with soft ionization technique and ultrahigh-resolution Mass Spectrometry(UHRMS)provides molecular information of organic constituents in real time.Here we describe the development and application of an automatic measurement system that incorporates PM_(2.5)sampling,thermal desorption,atmospheric pressure photoionization,and UHRMS analysis.Molecular formulas of detected organic compounds were deducted from the accurate(±10 ppm)molecular weights obtained at a mass resolution of 100,000,allowing the identification of small organic compounds in PM_(2.5).Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg.As a proof of principle,PM_(2.5)samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system.The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr.The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z.Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter.This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer.Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway.In summary,the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM_(2.5).