A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently und...A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.展开更多
In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets a...In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.展开更多
The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperat...The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperature were found on both curves, which corresponded to the formation of "aulifiower" oxide on the surface and the occurrence of flame during melting. These two temperatures are therefore defined as oxidation point and ignition point, respectively. The interior temperature-time curve is similar to that measured on the surface except for a comparable time delay. The oxidation and ignition temperatures increase with Ce content, an average increase of 33℃ and 61℃ was found when Ce addition was about 1.0 wt %. However, the increasing rate of the oxidation and ignition temperature decreases with increasing Ce content. An addition of 0.6wt% Ce is recommended for ignition-resistant AZ91 magnesium alloy.展开更多
In this paper,the Lauwerier map F a,b (x,y)=(bx(1-2y)+y,ay(1-y)) is considered for a=4 . This map possesses a nontrivial topologically transitive attractor Λ which is the closure of the unstable set of...In this paper,the Lauwerier map F a,b (x,y)=(bx(1-2y)+y,ay(1-y)) is considered for a=4 . This map possesses a nontrivial topologically transitive attractor Λ which is the closure of the unstable set of some hyperbolic fixed point. Periodic points are dense in Λ and all of them are hyperbolic with eigenvalues uniformly bounded away from 1 in norm. Moreover,any two periodic points are heteroclinically related (transversal intersection of their stable and unstable sets). The Sinai Bowen Ruelle measure supported on the attractor is constructed and its properties are studied.展开更多
In this Paper, we study the existence of solutions for the nonlocal integrodifferential equations with interval impulse and measure of non compactness by using M6nch - fixed point theorem. Finally, an example is given...In this Paper, we study the existence of solutions for the nonlocal integrodifferential equations with interval impulse and measure of non compactness by using M6nch - fixed point theorem. Finally, an example is given to illustrate our main result.展开更多
Keeping balance is the premise of human walking. ZMP(zero moment point) is a point where total torque achieves balance. It is an important evaluation parameter of balance ability in walking, since it can be used to be...Keeping balance is the premise of human walking. ZMP(zero moment point) is a point where total torque achieves balance. It is an important evaluation parameter of balance ability in walking, since it can be used to better reflect the dynamic balance during walking. ZMP can be used in many applications, such as medical rehabilitation, disease diagnosis, treatment and etc. In this paper, wearable inertial sensors system based on MEMS is used to measure ZMP(zero moment point) during walking, which is cheap, convenient, and free from the restriction of lab. Our wearable ZMP measurement system consists of inertial measurement subsystem and PC real-time monitoring station. Inertial measurement subsystem includes 9-axis inertial sensing nodes, the body communication network and the central node. Inertial sensing nodes are mounted on different parts of the body to collect body posture information in real-time, and then the best estimation of current posture are obtained by Kalman filter. The data from sensors is aggregated to the central node through the CAN bus, and then ZMP is calculated. Finally, it can be showed in the PC monitoring station. Experiments prove the system can achieve real-time ZMP detection during walking.展开更多
There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,th...There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.展开更多
To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capabl...To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.展开更多
BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satel...BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.展开更多
Bearings in a gas turbine engine are the key connecting components transmitting force and motion between rotors and thin-walled flexible casing.The bearing stiffness and damping of squeeze film damper(SFD)nearby beari...Bearings in a gas turbine engine are the key connecting components transmitting force and motion between rotors and thin-walled flexible casing.The bearing stiffness and damping of squeeze film damper(SFD)nearby bearings are easily affected by many factors,such as assembly process,load condition and temperature variation,resulting in uncertainties.The uncertainties may influence the response of the measuring point on the casing.Hence,it is difficult to carry out the fault diagnosis,whole machine balancing and other related works.In this paper,a double integral quantitative evaluation method is proposed to simultaneously analyze the influence of two uncertain dynamic coefficients on the response amplitude and phase of casing measuring points.Meanwhile,the coupling influence of stiffness and damping accompanied by dramatic changes with rotational speeds are essentially discussed.As an example,a typical engine bearing-casing system with complex dynamic characteristics is analyzed.The impact of uncertain dynamic coefficients on the unbalance response is quantitatively evaluated.展开更多
It is shown that there exists a J-convex subset C of a complex Hilbert space X, such that the J-convex hull of the set of all Jensen boundary points of C is different from C..
基金This project is supported by National Natural Science Foundation of China(No.50475176) and Municipal Natural Science Foundation of Beijing(No.KZ200511232019).
文摘A coding-based method to solve the image matching problems in stereovision measurement is presented. The solution is to add and append an identity ID to the retro-reflect point, so it can be identified efficiently under the complicated circumstances and has the characteristics of rotation, zooming, and deformation independence. Its design architecture and implementation process in details based on the theory of stereovision measurement are described. The method is effective on reducing processing data time, improving accuracy of image matching and automation of measuring system through experiments.
基金partially supported by the foundation of the research item of Strong Department of Engineering Innovation, which is sponsored by the Strong School of Engineering Innovation of Hanshan Normal University, China, 2013partially supported by National Natural Science Foundation of China (No. 11371379)
文摘In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.
基金the Hi-Tech Research and Development Program of China (grant No.2002AA336080) the National Basic Research Program of China (grant No. G2000067202) and Jiangxi Provincial Department of Education.
文摘The surface and interior temperature-time curves of blocky cerium modified AZ91D magnesium alloy were measured during a non-protective heating and melting process. Two inflection points with rapid increase in temperature were found on both curves, which corresponded to the formation of "aulifiower" oxide on the surface and the occurrence of flame during melting. These two temperatures are therefore defined as oxidation point and ignition point, respectively. The interior temperature-time curve is similar to that measured on the surface except for a comparable time delay. The oxidation and ignition temperatures increase with Ce content, an average increase of 33℃ and 61℃ was found when Ce addition was about 1.0 wt %. However, the increasing rate of the oxidation and ignition temperature decreases with increasing Ce content. An addition of 0.6wt% Ce is recommended for ignition-resistant AZ91 magnesium alloy.
基金Supported by the Special Funds for Major State Basic Research Projects and NSF(1 0 0 71 0 55)
文摘In this paper,the Lauwerier map F a,b (x,y)=(bx(1-2y)+y,ay(1-y)) is considered for a=4 . This map possesses a nontrivial topologically transitive attractor Λ which is the closure of the unstable set of some hyperbolic fixed point. Periodic points are dense in Λ and all of them are hyperbolic with eigenvalues uniformly bounded away from 1 in norm. Moreover,any two periodic points are heteroclinically related (transversal intersection of their stable and unstable sets). The Sinai Bowen Ruelle measure supported on the attractor is constructed and its properties are studied.
文摘In this Paper, we study the existence of solutions for the nonlocal integrodifferential equations with interval impulse and measure of non compactness by using M6nch - fixed point theorem. Finally, an example is given to illustrate our main result.
基金supported by "the Fundamental Research Funds for the Central Universities" ZYGX2013J123
文摘Keeping balance is the premise of human walking. ZMP(zero moment point) is a point where total torque achieves balance. It is an important evaluation parameter of balance ability in walking, since it can be used to better reflect the dynamic balance during walking. ZMP can be used in many applications, such as medical rehabilitation, disease diagnosis, treatment and etc. In this paper, wearable inertial sensors system based on MEMS is used to measure ZMP(zero moment point) during walking, which is cheap, convenient, and free from the restriction of lab. Our wearable ZMP measurement system consists of inertial measurement subsystem and PC real-time monitoring station. Inertial measurement subsystem includes 9-axis inertial sensing nodes, the body communication network and the central node. Inertial sensing nodes are mounted on different parts of the body to collect body posture information in real-time, and then the best estimation of current posture are obtained by Kalman filter. The data from sensors is aggregated to the central node through the CAN bus, and then ZMP is calculated. Finally, it can be showed in the PC monitoring station. Experiments prove the system can achieve real-time ZMP detection during walking.
基金the support from the National Natural Science Foundation of China(No.51905034,52275083)。
文摘There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.
基金supported by the National Natural Science Foundation of China(51305452)
文摘To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.41020144004,41374019,41104022)the National High Technology Research and Development Program of China(Grant No.2013AA122501)
文摘BeiDou regional navigation satellite system (BDS) also called BeiDou-2 has been in full operation since December 27, 2012. It consists of 14 satellites, including 5 satellites in Geostationary Orbit (GEO), 5 satellites in Inclined Geosynchronous Orbit (IGSO), and 4 satellites in Medium Earth Orbit (MEO). In this paper, its basic navigation and positioning performance are evaluated preliminarily by the real data collected in Beijing, including satellite visibility, Position Dilution of Precision (PDOP) value, the precision of code and carrier phase measurements, the accuracy of single point positioning and differential position- ing and ambiguity resolution (AR) performance, which are also compared with those of GPS. It is shown that the precision of BDS code and carrier phase measurements are about 33 cm and 2 mm, respectively, which are comparable to those of GPS, and the accuracy of BDS single point positioning has satisfied the design requirement. The real-time kinematic positioning is also feasible by BDS alolae in the opening condition, since its fixed rate and reliability of single-epoch dual-frequency AR is comparable to those of GPS. The accuracy of BDS carrier phase differential positioning is better than 1 cm for a very short baseline of 4.2 m and 3 cm for a short baseline of 8.2 km, which is on the same level with that of GPS. For the combined BDS and GPS, the fixed rate and reliability of single-epoch AR and the positioning accuracy are improved significantly. The accu- racy of BDS/GPS carrier phase differential positioning is about 35 and 20 % better than that of GPS for two short baseline tests in this study. The accuracy of BDS code differential positioning is better than 2.5 m. However it is worse than that of GPS, which may result from large code multipath errors of BDS GEO satellite measurements.
基金co-supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.51905025)the Joint Funds of the National Natural Science Foundation of China(No.U1708257)the Fundamental Research Funds for the Central Universities(No.JD1911)。
文摘Bearings in a gas turbine engine are the key connecting components transmitting force and motion between rotors and thin-walled flexible casing.The bearing stiffness and damping of squeeze film damper(SFD)nearby bearings are easily affected by many factors,such as assembly process,load condition and temperature variation,resulting in uncertainties.The uncertainties may influence the response of the measuring point on the casing.Hence,it is difficult to carry out the fault diagnosis,whole machine balancing and other related works.In this paper,a double integral quantitative evaluation method is proposed to simultaneously analyze the influence of two uncertain dynamic coefficients on the response amplitude and phase of casing measuring points.Meanwhile,the coupling influence of stiffness and damping accompanied by dramatic changes with rotational speeds are essentially discussed.As an example,a typical engine bearing-casing system with complex dynamic characteristics is analyzed.The impact of uncertain dynamic coefficients on the unbalance response is quantitatively evaluated.
文摘It is shown that there exists a J-convex subset C of a complex Hilbert space X, such that the J-convex hull of the set of all Jensen boundary points of C is different from C..