In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fract...In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.展开更多
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve...The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity.展开更多
A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction...A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations.展开更多
Mg-6.75Zn-0.57Zr-0.4Y-0.18Gd(wt.%)sheet with typical basal texture was produced by cross rolling and annealing.Room temperature tensile tests were subsequently conducted along rolling direction(RD),transverse directio...Mg-6.75Zn-0.57Zr-0.4Y-0.18Gd(wt.%)sheet with typical basal texture was produced by cross rolling and annealing.Room temperature tensile tests were subsequently conducted along rolling direction(RD),transverse direction(TD),and diagonal direction(RD45).Deformation mechanism and orientation evolution during the tension were investigated by quasi-in-situ electron backscatter diffraction observation and in-grain misorientation axis analysis.The results indicate that the activation of deformation mechanism mainly depends on the initial grain orientation.For RD sample,prismatic<a>slip plays an important role in the deformation of grains with<0001>axis nearly perpendicular to the RD.With the<0001>axis gradually tilted towards the RD,basal<a>slip becomes the dominant deformation mode.After the tensile fracture,the initial concentrically distributed{0001}pole is split into double peaks extending perpendicular to the RD,and the randomly distributed{1010}pole becomes parallel to the RD.The evolution in{0001}and{1010}poles during tension is related to the lattice rotation induced by basal<a>slip and prismatic<a>slip,respectively.TD and RD45 samples exhibit similar deformation mechanism and orientation evolution as the RD sample,which results in the nearly isotropic mechanical properties in the annealed cross-rolled sheet.展开更多
The impact of grain size, ranging from 0.9 μm to 9 μm, on the mechanical properties of commercially pure Mg is investigated at temperatures of 4K, 78K, and 298K. The mechanisms governing plastic flow are influenced ...The impact of grain size, ranging from 0.9 μm to 9 μm, on the mechanical properties of commercially pure Mg is investigated at temperatures of 4K, 78K, and 298K. The mechanisms governing plastic flow are influenced by both grain size and temperature. At 4K and 78K, dominant deformation modes in Mg involve dislocation glide and extension twinning, regardless of grain size. The interactions between basal and non-basal dislocations and dislocations with grain boundaries promote an unusually high rate of work hardening in the plastic regime, leading to premature failure. The yield stress follows the Hall-Petch relationship σy~ k/√d, with the slope k increasing with decreasing temperature. At 298K, in addition to dislocation glide and twinning, grain boundary sliding(GBS) becomes significant in samples with grain sizes below 3 μm, considerably enhancing the material's deformability. GBS activation provides an additional recovery mechanism for dislocations accumulating at grain boundaries, facilitating their absorption during sliding and rotation. Analysis of σ Θ relationship suggests that the basal slip is the dominant dislocation mode in Mg at 298K. Decreasing grain size suppresses dislocation activity and twinning and increases GBS, resulting in lower Θ and σ Θ values. Suppressing conventional deformation modes coupled with enhanced GBS yields stress softening, breaking down the Hall-Petch relationship in Mg below 3 μm grain size, leading to an inverse Hall-Petch behaviour. The work reports new data on the strength, ductility, work hardening and fracture behaviour, and their variations with Mg grain size across different temperature regimes.展开更多
Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the m...Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.展开更多
Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,i...Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.展开更多
Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed composit...Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
For a lot of applications in the mechanical industry,both attractive and mechanical properties of materials and wear resistance are required.Usually such a combination is achieved only by performing surface treatments...For a lot of applications in the mechanical industry,both attractive and mechanical properties of materials and wear resistance are required.Usually such a combination is achieved only by performing surface treatments.The aim of this investigation is the consolidation of 12% Mn steel surface by treatment of impacts.We show by optical and scanning electron microscopy,X ray diffraction,X ray spectrometry analysis and also by the realization of micro hardness,the effect of this kind of treatment on the mechanical and structural stability of the surface zone.Among of many obtained results,we distinguish the clear surface consolidation induced by a modification of surface zone crystalline structure.The mechanical deformation causes the transformation from an austenitic structure to the martensitic structure.展开更多
Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling,space power generation,deep water power generation,and temperature control,...Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling,space power generation,deep water power generation,and temperature control,but the search for essential thermoelectric materials with high performance still remains a great challenge.As an emerging low cost,solution-processed thermoelectric material,inorganic metal halide perovskites CsPb(I_(1–x)Br_(x))_(3) under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory.It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I_(1–x)Br_(x))_(3) synergistically.Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breakinginduced intrinsic strains.Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass,leading to excellent charge transport properties.Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner,surpassing the impact from intrinsic strains.Both anisotropic charge transport properties and ZT values are sensitive to the direction and magnitude of strain,showing a wide range of variation from 20%to 400%(with a ZT value of up to 1.85)compared with unstrained cases.The power generation efficiency of the thermoelectric device can reach as high as approximately 12%using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K,surpassing the performance of many existing bulk thermoelectric materials.展开更多
Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow t...Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers,the photovoltaic efficiencies usually drops in the resulting OSCs.Herein,a high photovoltaic efficiency of 15.03%and a large crack-onset strain of 15.70%is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PM6),non-fullerene accepter 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(Y6),and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene(SEBS)through the control of phase separation and crystallization.By employing a high-boiling point solvent additive 1-chloronaphthalene(CN)with different solubilities for PM6 and Y6,the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered,allowing for the different molecular rearrangement and liquid-liquid phase separation evolution.Consequently,the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6,enabling effective mechanical deformation and charge generation/transport.The revealed corrections between the film-formation process,film microstructure,and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs.展开更多
In the present study,the micro-mechanical behavior of Co CrFeMnNi high-entropy alloy was investigated using an in-house micro-tensile setup at room temperature and 550℃ at different strain rates.Micromechanical prope...In the present study,the micro-mechanical behavior of Co CrFeMnNi high-entropy alloy was investigated using an in-house micro-tensile setup at room temperature and 550℃ at different strain rates.Micromechanical properties are compared with those obtained using a commercial macro-tensile setup to check a potential sample size effect.Results show that mechanical properties such as yield strength,ultimate tensile strength and uniform elongation are independent of the sample size.However,the total elongation-to-failure of micro-samples is found to be lower than those of macro-counterparts.Apart from this,the material exhibits serrated plastic flow,which is strain rate dependent in terms of the onset strain and shape of serrations at 550℃.Furthermore,transmission electron microscopy investigations were performed to correlate the occurrence of serrations to the observed distinct dislocation structures.Microstructural results provide direct evidence that dislocations are curved and hence effectively pinned and unpinned at the lowest applied strain rate,which might be responsible for the occurrence of serrated plastic flow.展开更多
Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending pr...Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling.展开更多
We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bim...We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.展开更多
Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical p...Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy.展开更多
In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results s...In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.展开更多
Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wel...Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.展开更多
The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is...The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is observed.Under a-axis and c-axis compression,the maximum stresses are 89.0 GPa and 172.2 GPa respectively.Under a-axis compression,the destruction of icosahedra results in the unrecoverable deformation,while under c-axis compression,the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra.展开更多
A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture str...A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.展开更多
基金supported by Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant XDB18010401135 Program of the Institute of Geochemistry, Chinese Academy of Sciences
文摘In this paper, several mechanical deformation curves of limestone are reviewed, and the effects of temperature, confining pressure, and fluid are discussed. Generally, Mohr–Coulomb is used for limestone brittle fracture. The characteristic of low temperature cataclastic flow and the conditions and constitutive equations of intracrystal plastic deformation such as dislocation creep,diffusion creep, and superplastic flow are discussed in detail. Specifically, from the macroscopic and microscopic view, inelastic compression deformation(shear-enhanced compaction) of large porosity limestone is elaborated.Compared with other mechanics models and strength equations, the dual porosity(macroporosity and microporosity) model is superior and more consistent with experimental data. Previous research has suffered from a shortage of high temperature and high pressure limestone research; we propose several suggestions to avoid this problem in the future:(1) fluid-rock interaction research;(2) mutual transition between natural conditions and laboratory research;(3) the uniform strength criterion forshear-enhanced compaction deformation;(4) test equipment; and(5) superplastic flow mechanism research.
基金Funded by the National Natural Science Foundation of China(Nos.51701206 and 51671187)the Shanxi Natural Science Foundation(No.2019JQ-833)+2 种基金the Anhui Natural Science Foundation(1808085QE166)the Special Scientific Research Project of Shanxi Education Committee(No.19JQ0974)the Doctoral Research Initiation Project of Yan’an University(No.YDBD2018-21)。
文摘The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity.
基金supported by the project(MAD2DCM)-IMDEA Materials funded by Comunidad de Madrid and by the Recovery,Transformation and Resilience Plan and by NextGenerationEU from the European Union,and by the María de Maeztu seal of excellence from the Spanish Research Agency(CEX2018-000800-M)Mr.B.Yang wishes to express his gratitude for the support of the China Scholarship Council(202106370122).
文摘A large number of anomalous extension twins,with low or even negative twinning Schmid factors,were found to nucleate and grow in a strongly textured Mg-1Al alloy during tensile deformation along the extruded direction.The deformation mechanisms responsible for this behaviour were investigated through in-situ electron back-scattered diffraction,grain reference orientation deviation,and slip trace-modified lattice rotation.It was found that anomalous extension twins nucleated mainly at the onset of plastic deformation at or near grain boundary triple junctions.They were associated with the severe strain incompatibility between neighbour grains as a result from the differentbasal slip-induced lattice rotations.Moreover,the anomalous twins were able to grow with the applied strain due to the continuous activation ofbasal slip in different neighbour grains,which enhanced the strain incompatibility.These results reveal the complexity of the deformation mechanisms in Mg alloys at the local level when deformed along hard orientations.
基金the financial support from the National Natural Science Foundation of China(NSFC)with projects Nos.51874367,51574291.
文摘Mg-6.75Zn-0.57Zr-0.4Y-0.18Gd(wt.%)sheet with typical basal texture was produced by cross rolling and annealing.Room temperature tensile tests were subsequently conducted along rolling direction(RD),transverse direction(TD),and diagonal direction(RD45).Deformation mechanism and orientation evolution during the tension were investigated by quasi-in-situ electron backscatter diffraction observation and in-grain misorientation axis analysis.The results indicate that the activation of deformation mechanism mainly depends on the initial grain orientation.For RD sample,prismatic<a>slip plays an important role in the deformation of grains with<0001>axis nearly perpendicular to the RD.With the<0001>axis gradually tilted towards the RD,basal<a>slip becomes the dominant deformation mode.After the tensile fracture,the initial concentrically distributed{0001}pole is split into double peaks extending perpendicular to the RD,and the randomly distributed{1010}pole becomes parallel to the RD.The evolution in{0001}and{1010}poles during tension is related to the lattice rotation induced by basal<a>slip and prismatic<a>slip,respectively.TD and RD45 samples exhibit similar deformation mechanism and orientation evolution as the RD sample,which results in the nearly isotropic mechanical properties in the annealed cross-rolled sheet.
基金Financial support from National Science Centre of Poland under the OPUS project No.2021/43/B/ST5/00730 is gratefully acknowledgedsupport from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘The impact of grain size, ranging from 0.9 μm to 9 μm, on the mechanical properties of commercially pure Mg is investigated at temperatures of 4K, 78K, and 298K. The mechanisms governing plastic flow are influenced by both grain size and temperature. At 4K and 78K, dominant deformation modes in Mg involve dislocation glide and extension twinning, regardless of grain size. The interactions between basal and non-basal dislocations and dislocations with grain boundaries promote an unusually high rate of work hardening in the plastic regime, leading to premature failure. The yield stress follows the Hall-Petch relationship σy~ k/√d, with the slope k increasing with decreasing temperature. At 298K, in addition to dislocation glide and twinning, grain boundary sliding(GBS) becomes significant in samples with grain sizes below 3 μm, considerably enhancing the material's deformability. GBS activation provides an additional recovery mechanism for dislocations accumulating at grain boundaries, facilitating their absorption during sliding and rotation. Analysis of σ Θ relationship suggests that the basal slip is the dominant dislocation mode in Mg at 298K. Decreasing grain size suppresses dislocation activity and twinning and increases GBS, resulting in lower Θ and σ Θ values. Suppressing conventional deformation modes coupled with enhanced GBS yields stress softening, breaking down the Hall-Petch relationship in Mg below 3 μm grain size, leading to an inverse Hall-Petch behaviour. The work reports new data on the strength, ductility, work hardening and fracture behaviour, and their variations with Mg grain size across different temperature regimes.
文摘Aluminium alloy is one of the earliest and most widely used superplastic materials.The objective of this work is to review the scientific advances in superplastic Al alloys.Particularly,the emphasis is placed on the microstructural evolution and deformation mechanisms of Al alloys during superplastic deformation.The evolution of grain structure,texture,secondary phase,and cavities during superplastic flow in typical superplastic Al alloys is discussed in detail.The quantitative evaluation of different deformation mechanisms based on the focus ion beam(FIB)-assisted surface study provides new insights into the superplasticity of Al alloys.The main features,such as grain boundary sliding,intragranular dislocation slip,and diffusion creep can be observed intuitively and analyzed quantitatively.This study provides some reference for the research of superplastic deformation mechanism and the development of superplastic Al alloys.
基金National Natural Science Foundation of China (52275374, 52205414)Xi’an Jiaotong University Basic Research Funds for Freedom of Exploration and Innovation-Student Programs (xzy022023066)+3 种基金Key Research and Development Projects of Shaanxi Province (2023-YBGY-361)Young Elite Scientists Sponsorship Program by CAST (2021QNRC001)State Key Laboratory for Mechanical Behavior of Materials (20212311)Xiaomi Foundation through Xiaomi Young Scholar Program
文摘Mg-Gd-Y-Zr alloy,as a typical magnesium rare-earth(Mg-RE)alloy,is gaining popularity in the advanced equipment manufacturing fields owing to its noticeable age-hardening properties and high specific strength.However,it is extremely challenging to prepare wrought components with large dimensions and complex shapes because of the poor room-temperature processability of Mg-Gd-Y-Zr alloy.Herein,we report a wire-arc directed energy deposited(DED)Mg-10.45Gd-2.27Y-0.52Zr(wt.%,GW102K)alloy with high RE content presenting a prominent combination of strength and ductility,realized by tailored nanoprecipitates through an optimized heat treatment procedure.Specifically,the solution-treated sample exhibits excellent ductility with an elongation(EL)of(14.6±0.1)%,while the aging-treated sample at 200°C for 58 h achieves an ultra-high ultimate tensile strength(UTS)of(371±1.5)MPa.Besides,the aging-treated sample at 250°C for 16 h attains a good strength-ductility synergy with a UTS of(316±2.1)MPa and a EL of(8.5±0.1)%.Particularly,the evolution mechanisms of precipitation response induced by various aging parameters and deformation behavior caused by nanoprecipitates type were also systematically revealed.The excellent ductility resulted from coordinating localized strains facilitated by active slip activity.And the ultra-high strength should be ascribed to the dense nano-β'hampering dislocation motion.Additionally,the shearable nano-β1 contributed to the good strength-ductility synergy.This work thus offers insightful understanding into the nanoprecipitates manipulation and performance tailoring for the wire-arc DED preparation of large-sized Mg-Gd-Y-Zr components with complex geometries.
基金financially supported by the National Natural Science Foundation of China(Nos.51971017,52271003,52071024,52001184,and 52101188)the National Science Fund for distinguished Young Scholars,China(No.52225103)+3 种基金the Funds for Creative Research Groups of China(No.51921001)the National Key Research and Development Program of China(No.2022YFB4602101)the Projects of International Cooperation and Exchanges NSFC(No.52061135207)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-130A1)。
文摘Short-range ordering(SRO)is one of the most important structural features of high entropy alloys(HEAs).However,the chemical and structural analyses of SROs are very difficult due to their small size,complexed compositions,and varied locations.Transmission electron microscopy(TEM)as well as its aberration correction techniques are powerful for characterizing SROs in these compositionally complex alloys.In this short communication,we summarized recent progresses regarding characterization of SROs using TEM in the field of HEAs.By using advanced TEM techniques,not only the existence of SROs was confirmed,but also the effect of SROs on the deformation mechanism was clarified.Moreover,the perspective related to application of TEM techniques in HEAs are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
文摘For a lot of applications in the mechanical industry,both attractive and mechanical properties of materials and wear resistance are required.Usually such a combination is achieved only by performing surface treatments.The aim of this investigation is the consolidation of 12% Mn steel surface by treatment of impacts.We show by optical and scanning electron microscopy,X ray diffraction,X ray spectrometry analysis and also by the realization of micro hardness,the effect of this kind of treatment on the mechanical and structural stability of the surface zone.Among of many obtained results,we distinguish the clear surface consolidation induced by a modification of surface zone crystalline structure.The mechanical deformation causes the transformation from an austenitic structure to the martensitic structure.
基金supported by the Thousand Talent Young Scholar Program(BE0200006)Shanghai Aerospace Science and Technology Innovation Fund(USCAST2020-13)+1 种基金the Oceanic Interdisciplinary Program from Shanghai Jiao Tong University(SL2020MS008)the National Natural Science Foundation of China(Grant No.51776041).
文摘Solid-state thermoelectric energy conversion devices attract broad research interests because of their great promises in waste heat recycling,space power generation,deep water power generation,and temperature control,but the search for essential thermoelectric materials with high performance still remains a great challenge.As an emerging low cost,solution-processed thermoelectric material,inorganic metal halide perovskites CsPb(I_(1–x)Br_(x))_(3) under mechanical deformation is systematically investigated using the first-principle calculations and the Boltzmann transport theory.It is demonstrated that halogen mixing and mechanical deformation are efficient methods to tailor electronic structures and charge transport properties in CsPb(I_(1–x)Br_(x))_(3) synergistically.Halogen mixing leads to band splitting and anisotropic charge transport due to symmetry-breakinginduced intrinsic strains.Such band splitting reconstructs the band edge and can decrease the charge carrier effective mass,leading to excellent charge transport properties.Mechanical deformation can further push the orbital energies apart from each other in a more controllable manner,surpassing the impact from intrinsic strains.Both anisotropic charge transport properties and ZT values are sensitive to the direction and magnitude of strain,showing a wide range of variation from 20%to 400%(with a ZT value of up to 1.85)compared with unstrained cases.The power generation efficiency of the thermoelectric device can reach as high as approximately 12%using mixed halide perovskites under tailored mechanical deformation when the heat-source is at 500 K and the cold side is maintained at 300 K,surpassing the performance of many existing bulk thermoelectric materials.
基金supported by the National Natural Science Foundation of China(51873204 and 51933010)the 111 Project(B21005)+3 种基金the National 1000-talent-plan program(1110010341)the Science and Technology Program of Shaanxi Province(2021KJXX-13)the Fundamental Research Funds for the Central Universities(GK202103104)supported by Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,and Chinese Academy of Sciences.
文摘Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers,the photovoltaic efficiencies usually drops in the resulting OSCs.Herein,a high photovoltaic efficiency of 15.03%and a large crack-onset strain of 15.70%is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PM6),non-fullerene accepter 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(Y6),and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene(SEBS)through the control of phase separation and crystallization.By employing a high-boiling point solvent additive 1-chloronaphthalene(CN)with different solubilities for PM6 and Y6,the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered,allowing for the different molecular rearrangement and liquid-liquid phase separation evolution.Consequently,the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6,enabling effective mechanical deformation and charge generation/transport.The revealed corrections between the film-formation process,film microstructure,and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs.
基金financial support by the Deutsche Forschungsgemeinschaft within the framework of the Priority Program“Compositionally Complex Alloys-High-Entropy Alloys(CCA-HEA)”(SPP 2006),grant no.KA 4631/1-1,FR 1714/7-1。
文摘In the present study,the micro-mechanical behavior of Co CrFeMnNi high-entropy alloy was investigated using an in-house micro-tensile setup at room temperature and 550℃ at different strain rates.Micromechanical properties are compared with those obtained using a commercial macro-tensile setup to check a potential sample size effect.Results show that mechanical properties such as yield strength,ultimate tensile strength and uniform elongation are independent of the sample size.However,the total elongation-to-failure of micro-samples is found to be lower than those of macro-counterparts.Apart from this,the material exhibits serrated plastic flow,which is strain rate dependent in terms of the onset strain and shape of serrations at 550℃.Furthermore,transmission electron microscopy investigations were performed to correlate the occurrence of serrations to the observed distinct dislocation structures.Microstructural results provide direct evidence that dislocations are curved and hence effectively pinned and unpinned at the lowest applied strain rate,which might be responsible for the occurrence of serrated plastic flow.
基金supported by the National Natural Science Foundation of China(Grant Nos.51805064,51822509)the Qingnian project of science and technology research program of Chongqing Education Commission of China(Grant No.KJQN202101141).
文摘Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling.
基金financially supported by the National Natural Science Foundation of China (No. 52275305)the Fundamental Research Funds for the Central Universities (No. FRF-IC-20-10)the China Postdoctoral Science Foundation (No. 2021M700378)
文摘We investigated the asymmetric tension-compression(T-C)behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests.The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression,respectively,which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa,respectively.Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T-C asymmetry.However,due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression,the bimodal structure possesses a lower T-C asymmetry(0.68)compared to the uniform structure(0.56).Multiple extension twins occur during deformation,and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains.Furthermore,the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51902254 and 12072286)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2021JZ-53 and 2018JQ5108)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.20JK0845)。
文摘Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy.
基金the financial support of Qinghai Provincial Science and Technology Department Basic Research Program (No.2020-ZJ-707) to carry out this research work。
文摘In this study, a systematic investigation on the effect of solution treatment time(2–8 h) at 540℃ on the microstructure and mechanical properties in as-cast Mg-1Al-12Y(AY112, wt.%) alloy was performed. The results showed that the solution treatment did not cause the growth of grains and the change of texture;however, the mechanical properties had been significantly improved, which was mainly attributed to the precipitation of 18R long period ordered stacking(LPSO) phase in the solution-treated alloys. In addition, the dissolution of β-Mg_(24)Y_(5)phase and the diffusion of solute atoms during the solution treatment were both beneficial to the mechanical properties. When the as-cast alloy was solution-treated at 540℃ for 4 h(T4-4h alloy), the mechanical properties of the alloy are optimal. Compared with the as-cast alloy,the ultimate tensile strength(UTS) and elongation of the T4-4h alloy are increased by ~23% and ~179%, respectively. The deformation of the T4-4h alloys was dominated by a combination of basal slip and non-basal slip, and the presence of the LPSO phase effectively inhibited the nucleation of extension twin. Besides, the LPSO phase can also hinder the activation of basal dislocations and the movement of non-basal dislocations. Therefore, the LPSO phase simultaneously improves the strength and plasticity of the alloy.
基金Supported by the PetroChina Scientific Research and Technology Development Project (2022KT1205)。
文摘Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2015DFR50650)the National Natural Science Foundation of China(Grant Nos.51521001,51502220,and 11402183)the Fundamental Research Funds for the Central Universities of China(Grant Nos.WUT:2016-ZY-066 and WUT:2015IA014)
文摘The mechanical properties and deformation mechanisms of boron carbide under a-axis and c-axis uniaxial compression are investigated by ab initio calculations based on the density functional theory.Strong anisotropy is observed.Under a-axis and c-axis compression,the maximum stresses are 89.0 GPa and 172.2 GPa respectively.Under a-axis compression,the destruction of icosahedra results in the unrecoverable deformation,while under c-axis compression,the main deformation mechanism is the formation of new bonds between the boron atoms in the three-atom chains and the equatorial boron atoms in the neighboring icosahedra.
基金Funded by the National Natural Science Foundation of China(No.51911530119)the Department of Education of Gansu Province Innovation Fund(No.2021A-023)the Open Fund Project of Key Laboratory of Solar Power System Engineering Project(No.2022SPKL01)。
文摘A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.