This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
This work proposes to study the effective elastic properties(EEP)of a wood-plastic composite(WPC)made from polyethylene terephthalate(PET)and Chilean Radiate pine’s wood our,using nite element simulations of a repres...This work proposes to study the effective elastic properties(EEP)of a wood-plastic composite(WPC)made from polyethylene terephthalate(PET)and Chilean Radiate pine’s wood our,using nite element simulations of a representative volume element(RVE)with periodic boundary conditions.Simulations are validated through a static 3-point bending test,with specimens obtained by extruding and injection.The effect of different weight fractions,space orientations and sizes of particles are here examined.Numerical predictions are empirically conrmed in the sense that composites with more wood our content and bigger size,have higher elastic modulus.However,these results are very sensitive to the orientation of particles.Voigt and Reuss mean-eld homogenisation approaches are also given as upper and lower limits.Experimental tests evidence that exural strengths and ultimate tensile elongations decrease respect to 100%PET,but these properties can be enhanced considering particle-size distributions instead of a xed size of wood our.展开更多
Wood and wood-based composite materials have gained increasing attention in the sustainable building industry because of their renewability and environmental friendliness.Oriented oblique strand lumber(Eucalyptus Stra...Wood and wood-based composite materials have gained increasing attention in the sustainable building industry because of their renewability and environmental friendliness.Oriented oblique strand lumber(Eucalyptus Strand Wood,ESWood),which is manufactured from fast-growing small diameter eucalyptus wood(Eucalyptus urophylla×E.grandis),is introduced in this paper.Small clear specimen tests were conducted to determine the mechanical properties of ESWood material while full-scale component tests were performed to observe the structural performance of ESWood beams.A comparison of mechanical properties of ESWood with other wood/bamboo-based materials is then reported.From the results presented herein,it appears that the strength and stiffness properties of ESWood are affected by grain directionality and glued layers.However,it still has preferable mechanical properties as a building material,which is comparable or superior to those of other engineered wood/bamboo-based products(e.g.,Sitka spruce,LVL,OSL,Glulam,and Glubam).Furthermore,results from full-scale component tests show the stable mechanical performance of beams made by ESWood.This study makes a significant contribution to a potential utilization of fast-growing eucalyptus for general use in construction,and the presented mechanical tests results can serve as a fundamental data for more applications of ESWood in practical engineering.展开更多
In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were ...In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province.The experimental results show that adding waste glass particles can improve the grain size distribution of tailings.The effect is proportional to the content.The compressive strength of tailings mortar has increased significantly.The fineness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder,but the compressive strength of the mixture has gradually enhanced with the increase of the dosage.Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity,which can act hydration with tailings,at the same time glass powder also,plays a role in fine aggregate filling.Therefore,all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.展开更多
The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the s...The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aeroengine. In this part, the experimental research work is describled, and the constitutive models and applications have been described in part I.展开更多
SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a compreh...SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a comprehensive investigation of the mechanical behavior of SP-RSRC under various strain rates,employing a combination of experimental,theoretical,and numerical analyses.Firstly,quasi-static and dynamic compression tests were performed on SP-RSRC utilizing a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus.Nonlinear stress-strain relationships of SP-RSRC were obtained for strain rates ranging from 1×10^(−3) to 3065 s^(−1).The results indicated that the composite showed evident strain rate sensitivity,along with nonlinearity.Then,a nonlinear visco-hyperelastic constitutive model was developed,consisting of a hyperelastic component utilizing the 3rd-order Ogden energy function and a viscous component employing a rate-dependent relaxation time scheme.The model accurately characterized the dynamic mechanical response of SP-RSRC,effectively mitigating the challenge of calibrating an excessive number of material parameters inherent in conventional viscoelastic models.Furthermore,the simplified rubber material(SRM)model,integrated within the LS-DYNA software,was chosen to depict the mechanical properties of SP-RSRC in numerical simulations.The parameters of the SRM model were further calibrated based on the strain-stress relationships of SP-RSRC,as predicted by the developed nonlinear visco-hyperelastic constitutive model.Finally,an inverse ballistic experiment using a single-stage air gun was conducted for SP-RSRC.Numerical simulations of SHPB experiments and the inverse ballistic experiment were then performed,and the reliability of the calibrated SRM model was verified by comparing the results of experiments and numerical simulations.This study offers a valuable reference for the utilization of SP-RSRC in the realm of impact protection.展开更多
Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Inves...Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Investigations on the tensile properties were performed as a function of thermoforming temperature,extensile speed and fiber orientation based on an orthogonal experiment design.The experimental results show that the automotive carpets are rate-dependent anisotropic one and very sensitive to the forming temperature.The tensile properties are strongly depended on the forming temperature when compared with the extensile speed and the fiber orientation.Experiments only varying with the temperature were performed because of the dominative effect of the temperature.Different deformation performances were observed with different temperatures.Deformation mechanisms at the thermoforming temperatures were presented to explain the nonlinear trend of the ultimate elongation with the temperatures based on the combination of the experimental observations and the corresponding polymer theories.展开更多
The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes test...The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes tests on the output displacement and force characteristics for an actuator using homemade magnetostrictive material.The experimental result shows that the actuator has satisfactory output precisions and ranges in transient and stable states,and can be used in low-frequency vibration control system of precise equipment.展开更多
This paper deals with the influence of water content on the mechanical properties of gypsum breccia with different initial water contents. The experimental research was taken on the GDS (geotechnical digital systems) ...This paper deals with the influence of water content on the mechanical properties of gypsum breccia with different initial water contents. The experimental research was taken on the GDS (geotechnical digital systems) tri-axial experiment system by strain rate control. The mechanical properties,including stress-strain curves,peak deviator stress,relative residual strength,elastic modulus,Poisson's ratio,angle of internal friction and cohesion of gypsum breccia,were studied by experiment. The results showed that the water content has obvious infiuence on the mechanical properties of gypsum breccia. With increasing of water content,the angle of internal friction and cohesion of gypsum breccia decrease linearly. Meanwhile,the stress-strain curves go through from the declining,hump curve to the strain hardening curve. At the same confining pressure,the peak deviator stress and elastic modulus decrease exponentially,while Poisson's ratio increases linearly with the increasing of the water content. At the same water content,with increasing of the confining pressure,the peak deviator stress,elastic modulus and the peak deviator stress increase trend but Poisson's ratio decreases at a lower water content. While at a high water contents,the Poisson's ratio doesn't change much. It shows that water content plays an important role in the process of changing from the brittleness to plastic for the mechanical properties of gypsum breccia.展开更多
The mechanical properties of marble, limestone, and sandstone as well as the stress-strain curve, the varying characteristics of the peak strength, the peak strain and elastic modulus were studied by using the MTS810 ...The mechanical properties of marble, limestone, and sandstone as well as the stress-strain curve, the varying characteristics of the peak strength, the peak strain and elastic modulus were studied by using the MTS810 Rock Mechanics Servo-controlled Testing System under the action of temperatures ranging from room temperature to 800°C Results show that (1) the peak strength and elastic modulus of marble fluctuate at the temperature from normal to 400°C; and they decrease gradually over 400°C (2) With the rise of the temperature, the peak strength and elastic modulus of limestone show downward trend from normal temperature to 200°C have little change from 200°C to 600°C and decrease sharply over 600°C (3) The peak strength of sandstone shows a downward trend while a little change for elastic modulus at normal temperature to 200°C and from 200°C to 600°C, the peak strength of sandstone increases while a little change for elastic modulus; the peak strength and elastic modulus decrease rapidly at the temperature over 600°C. (4) The peak strain of limestone shows little change at normal temperature to 600°C, however, the peak strain increases rapidly over 600°C; and for marble and sandstone, the peak strain decreases with the rise of the temperature from normal temperature to 200°C, the peak strain increases rapidly over 200°C. The result can provide valuable references for the rock engineering design at high temperature.展开更多
This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parame...This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parameters were designed and tested under monotonic and cyclic quasi-static loading protocols.The experimental results from a total of 232 specimens were analyzed to develop an analytical model to calculate the backbone curve and the maximum elastic restoring force for U-shaped 65Mn bumpers.Thus,the analytical equations to calculate the elastic,hardening,and unloading stiffness of U-shaped 65Mn bumpers,as well as their maximum elastic restoring force,are validated by using an additional ten groups of bumpers with varying radiuses.These analytical equations can accurately predict the mechanical parameters of U-shaped 65Mn steel bumpers for a design purpose.展开更多
In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain rou...In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain roughness) and temperature conditions were performed. The experimental result show that the dynamic properties of asphalt mixtures are influenced by vehicle load and speed, besides, the effects of temperature on dynamic properties of asphalt mixture are significant.展开更多
The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested fo...The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.展开更多
Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many prob...Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.展开更多
The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two ...The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.展开更多
Against protection requirements for high-speed fragments on the ground weapons,we carried out the research work of crushing mechanism at different impact speeds ofφ8.7 mm spherical tungsten alloy,the penetration to 6...Against protection requirements for high-speed fragments on the ground weapons,we carried out the research work of crushing mechanism at different impact speeds ofφ8.7 mm spherical tungsten alloy,the penetration to 603 armor steel was completed by 20 mm ballistic gun,and the ANSYS/LS-DYNA software was used to complete the numerical calculation of the penetration.We find that there are different crushing mechanisms of spherical tungsten alloy with different speeds and low speed,the crushing mechanism of fragment is mainly controlled by overall plastic deformation,shearing stripping,and squeezing at a high pressure and a high speed.The crushing mechanism will have a spallation phenomenon in addition to the crushing mechanism under high pressure.展开更多
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
基金support from the Chilean Regional Government of Maule through the FIC-R project“Valorization of recycled waste through the creation of new materials for the manufacture of marketable products”,code BIP 30.481.945。
文摘This work proposes to study the effective elastic properties(EEP)of a wood-plastic composite(WPC)made from polyethylene terephthalate(PET)and Chilean Radiate pine’s wood our,using nite element simulations of a representative volume element(RVE)with periodic boundary conditions.Simulations are validated through a static 3-point bending test,with specimens obtained by extruding and injection.The effect of different weight fractions,space orientations and sizes of particles are here examined.Numerical predictions are empirically conrmed in the sense that composites with more wood our content and bigger size,have higher elastic modulus.However,these results are very sensitive to the orientation of particles.Voigt and Reuss mean-eld homogenisation approaches are also given as upper and lower limits.Experimental tests evidence that exural strengths and ultimate tensile elongations decrease respect to 100%PET,but these properties can be enhanced considering particle-size distributions instead of a xed size of wood our.
基金by the Application for Collaborative Research Project under International Joint Research Laboratory of Earthquake Engineering(TMGFXK-2015-002-2)Fundamental Research Funds for the Central University(22120180315,22120170521).
文摘Wood and wood-based composite materials have gained increasing attention in the sustainable building industry because of their renewability and environmental friendliness.Oriented oblique strand lumber(Eucalyptus Strand Wood,ESWood),which is manufactured from fast-growing small diameter eucalyptus wood(Eucalyptus urophylla×E.grandis),is introduced in this paper.Small clear specimen tests were conducted to determine the mechanical properties of ESWood material while full-scale component tests were performed to observe the structural performance of ESWood beams.A comparison of mechanical properties of ESWood with other wood/bamboo-based materials is then reported.From the results presented herein,it appears that the strength and stiffness properties of ESWood are affected by grain directionality and glued layers.However,it still has preferable mechanical properties as a building material,which is comparable or superior to those of other engineered wood/bamboo-based products(e.g.,Sitka spruce,LVL,OSL,Glulam,and Glubam).Furthermore,results from full-scale component tests show the stable mechanical performance of beams made by ESWood.This study makes a significant contribution to a potential utilization of fast-growing eucalyptus for general use in construction,and the presented mechanical tests results can serve as a fundamental data for more applications of ESWood in practical engineering.
基金Found by the National Natural Science Foundation of China(Nos.51279109 and 51474050)the Liaoning Education Department Funds(No.201364088)
文摘In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on,mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province.The experimental results show that adding waste glass particles can improve the grain size distribution of tailings.The effect is proportional to the content.The compressive strength of tailings mortar has increased significantly.The fineness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder,but the compressive strength of the mixture has gradually enhanced with the increase of the dosage.Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity,which can act hydration with tailings,at the same time glass powder also,plays a role in fine aggregate filling.Therefore,all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.
文摘The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aeroengine. In this part, the experimental research work is describled, and the constitutive models and applications have been described in part I.
文摘SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a comprehensive investigation of the mechanical behavior of SP-RSRC under various strain rates,employing a combination of experimental,theoretical,and numerical analyses.Firstly,quasi-static and dynamic compression tests were performed on SP-RSRC utilizing a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus.Nonlinear stress-strain relationships of SP-RSRC were obtained for strain rates ranging from 1×10^(−3) to 3065 s^(−1).The results indicated that the composite showed evident strain rate sensitivity,along with nonlinearity.Then,a nonlinear visco-hyperelastic constitutive model was developed,consisting of a hyperelastic component utilizing the 3rd-order Ogden energy function and a viscous component employing a rate-dependent relaxation time scheme.The model accurately characterized the dynamic mechanical response of SP-RSRC,effectively mitigating the challenge of calibrating an excessive number of material parameters inherent in conventional viscoelastic models.Furthermore,the simplified rubber material(SRM)model,integrated within the LS-DYNA software,was chosen to depict the mechanical properties of SP-RSRC in numerical simulations.The parameters of the SRM model were further calibrated based on the strain-stress relationships of SP-RSRC,as predicted by the developed nonlinear visco-hyperelastic constitutive model.Finally,an inverse ballistic experiment using a single-stage air gun was conducted for SP-RSRC.Numerical simulations of SHPB experiments and the inverse ballistic experiment were then performed,and the reliability of the calibrated SRM model was verified by comparing the results of experiments and numerical simulations.This study offers a valuable reference for the utilization of SP-RSRC in the realm of impact protection.
基金Supported by National Natural Science Foundation of China(No.50305020)
文摘Tensile properties with different thermoforming conditions and deformation mechanism at thermoforming temperatures of automotive needlepunched carpets made up of three layers of different materials were reported.Investigations on the tensile properties were performed as a function of thermoforming temperature,extensile speed and fiber orientation based on an orthogonal experiment design.The experimental results show that the automotive carpets are rate-dependent anisotropic one and very sensitive to the forming temperature.The tensile properties are strongly depended on the forming temperature when compared with the extensile speed and the fiber orientation.Experiments only varying with the temperature were performed because of the dominative effect of the temperature.Different deformation performances were observed with different temperatures.Deformation mechanisms at the thermoforming temperatures were presented to explain the nonlinear trend of the ultimate elongation with the temperatures based on the combination of the experimental observations and the corresponding polymer theories.
基金Sponsored by National Nature Science Foundation of China(50005020)Youth Foundation Support Project of Ningbo Province(02J20102-07)
文摘The paper introduces the performances of magnetostrictive actuators and its applications,discusses the design methods for the structure and internal magnetic circuit of a giant magnetostrictive actuator,and makes tests on the output displacement and force characteristics for an actuator using homemade magnetostrictive material.The experimental result shows that the actuator has satisfactory output precisions and ranges in transient and stable states,and can be used in low-frequency vibration control system of precise equipment.
文摘This paper deals with the influence of water content on the mechanical properties of gypsum breccia with different initial water contents. The experimental research was taken on the GDS (geotechnical digital systems) tri-axial experiment system by strain rate control. The mechanical properties,including stress-strain curves,peak deviator stress,relative residual strength,elastic modulus,Poisson's ratio,angle of internal friction and cohesion of gypsum breccia,were studied by experiment. The results showed that the water content has obvious infiuence on the mechanical properties of gypsum breccia. With increasing of water content,the angle of internal friction and cohesion of gypsum breccia decrease linearly. Meanwhile,the stress-strain curves go through from the declining,hump curve to the strain hardening curve. At the same confining pressure,the peak deviator stress and elastic modulus decrease exponentially,while Poisson's ratio increases linearly with the increasing of the water content. At the same water content,with increasing of the confining pressure,the peak deviator stress,elastic modulus and the peak deviator stress increase trend but Poisson's ratio decreases at a lower water content. While at a high water contents,the Poisson's ratio doesn't change much. It shows that water content plays an important role in the process of changing from the brittleness to plastic for the mechanical properties of gypsum breccia.
基金Supported by the National Natural Science Foundation of China (Grant No. 50490273)the National Key Basic Research and Development Program of China (973 Project) (Grant No. 2007CB209400)Xuzhou Institute of Technology (Grant No. XKY2007219)
文摘The mechanical properties of marble, limestone, and sandstone as well as the stress-strain curve, the varying characteristics of the peak strength, the peak strain and elastic modulus were studied by using the MTS810 Rock Mechanics Servo-controlled Testing System under the action of temperatures ranging from room temperature to 800°C Results show that (1) the peak strength and elastic modulus of marble fluctuate at the temperature from normal to 400°C; and they decrease gradually over 400°C (2) With the rise of the temperature, the peak strength and elastic modulus of limestone show downward trend from normal temperature to 200°C have little change from 200°C to 600°C and decrease sharply over 600°C (3) The peak strength of sandstone shows a downward trend while a little change for elastic modulus at normal temperature to 200°C and from 200°C to 600°C, the peak strength of sandstone increases while a little change for elastic modulus; the peak strength and elastic modulus decrease rapidly at the temperature over 600°C. (4) The peak strain of limestone shows little change at normal temperature to 600°C, however, the peak strain increases rapidly over 600°C; and for marble and sandstone, the peak strain decreases with the rise of the temperature from normal temperature to 200°C, the peak strain increases rapidly over 200°C. The result can provide valuable references for the rock engineering design at high temperature.
基金National Science Foundation of China for the Financial Support for This Research under Grant Nos.51378047 and 51408027。
文摘This study proposes a novel U-shaped 65Mn steel bumper as the displacement restraining device for base-isolated structures with laminated elastomeric rubber bearings.A series of bumpers with different geometric parameters were designed and tested under monotonic and cyclic quasi-static loading protocols.The experimental results from a total of 232 specimens were analyzed to develop an analytical model to calculate the backbone curve and the maximum elastic restoring force for U-shaped 65Mn bumpers.Thus,the analytical equations to calculate the elastic,hardening,and unloading stiffness of U-shaped 65Mn bumpers,as well as their maximum elastic restoring force,are validated by using an additional ten groups of bumpers with varying radiuses.These analytical equations can accurately predict the mechanical parameters of U-shaped 65Mn steel bumpers for a design purpose.
基金Funded by the Science and Technology Program of Communications Depart-ment of Henan Province(No.2006P335)
文摘In order to study the effects of loading condition and temperature on the dynamic properties of asphalt mixtures, the dynamic loading tests on different loading condition (various speeds and loads under a certain roughness) and temperature conditions were performed. The experimental result show that the dynamic properties of asphalt mixtures are influenced by vehicle load and speed, besides, the effects of temperature on dynamic properties of asphalt mixture are significant.
文摘The mechanical properties of multi-lead rubber bearings (MLRBs) were investigated by experiment and finite element analysis. First, the vertical stiffness, horizontal stiffness and yielded shear force were tested for four MLRB specimens and two specimens of the single-lead rubber bearings ( SLRBs). Then, the MLRBs were modeled by the explicit finite element analysis software ANSYS/ LS-DYNA, in order to evaluate the horizontal force-displacement hysteretic curves under static vertical and dynamical horizontal loadings. The disagreement between the tested and theoretical values was less than 11.4%, and MLRBs and SLRBs were similar in vertical stiffness, pre-yield stiffness and yield stiffness.
文摘Currently for the steel tube reinforced concrete composite pile research, although predecessors make a comprehensive research on the composite pile beating performance, design technology, but there are still many problems have not been solved, such as the steel tube reinforced concrete pile composite interracial force learn performance research is still in the initial stage. In this paper, we mainly discuss the research methods of several interface mechanical properties and propose the possibility of studying the mechanical properties of the steel tube reinforced concrete composite pile by using the principle of ultrasonic speckle.
基金China National Nature Science Foundation(Grant No.11872119)Foundation Strengthening Project(Grant No.2020-JCJQ-ZD-220)for supporting this project。
文摘The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations.
基金Funded by the National Defense Technology Key Laboratory of Impact Environmental Materials。
文摘Against protection requirements for high-speed fragments on the ground weapons,we carried out the research work of crushing mechanism at different impact speeds ofφ8.7 mm spherical tungsten alloy,the penetration to 603 armor steel was completed by 20 mm ballistic gun,and the ANSYS/LS-DYNA software was used to complete the numerical calculation of the penetration.We find that there are different crushing mechanisms of spherical tungsten alloy with different speeds and low speed,the crushing mechanism of fragment is mainly controlled by overall plastic deformation,shearing stripping,and squeezing at a high pressure and a high speed.The crushing mechanism will have a spallation phenomenon in addition to the crushing mechanism under high pressure.