期刊文献+
共找到8,068篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
1
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 Rock mechanics mechanical property Seepage pressure Numerical simulation MICROCRACKS
下载PDF
Driving pressure in mechanical ventilation:A review 被引量:2
2
作者 Syeda Farheen Zaidi Asim Shaikh +2 位作者 Daniyal Aziz Khan Salim Surani Iqbal Ratnani 《World Journal of Critical Care Medicine》 2024年第1期15-27,共13页
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev... Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed. 展开更多
关键词 Driving pressure Acute respiratory distress syndrome MORTALITY Positive end-expiratory pressure Ventilator induced lung injury mechanical ventilation
下载PDF
The Effect of External Pressure on Mechanical Properties of Aquamarine Gemstone Using First Principles Studies
3
作者 Evarist Kahuluda Pulapa Ventkata Kanaka Rao Stanley Mwanga 《Journal of Minerals and Materials Characterization and Engineering》 2024年第5期237-246,共10页
Aquamarine gemstones are popular jewelry in the gemstone trade and are currently one of the important products in the world market because of their economic value. Aquamarine is a Beryllium Aluminium Silicate with the... Aquamarine gemstones are popular jewelry in the gemstone trade and are currently one of the important products in the world market because of their economic value. Aquamarine is a Beryllium Aluminium Silicate with the chemical formula Be3Al2Si6O18 and crystallizes in the hexagonal system with space group P6/mcc (192), and Tanzania has wide deposits of aquamarine gemstones. The quality of gemstone depends on its characteristic properties, including electronic, optical, and mechanical properties. In the present study, the effect of external pressure on mechanical properties including independent elastic constants and other related parameters such as Bulk modulus, Shear modulus, Young modulus, Poisson’s ratio, and Compressibility were studied. Density Function Theory in the forcite module of the material studies software on the external pressure within the range of 0 - 200 GPa on the optimized structure at electrostatic, Van der Waals and Ewald terms were used in this study. The results reveal that the independent elastic constants are mechanically unstable at 50 - 120 Gpa and are stable at 0 - 40 GPa and above 120 GPa, with the average bulk modulus, shear modulus, young modulus, Poisson’s ratio of 2319.9447, 652.3058, 1789.2236, and 0.26 respectively with the compressibility of 0.059921/TPa, this indicates that aquamarine gemstones are stable against strain and strongly against shear stress but opposing shear deformation. These values are within other crystalline materials found in the literature. This provides technological backing for the comprehensive valuation of mechanical properties, quality, and stability of gemstones available in Tanzania. 展开更多
关键词 Aquamarine Gemstones mechanical Properties External pressure Biovia Material Studio Forcite Module
下载PDF
Pressure stimulated current in progressive failure process of combined coal-rock under uniaxial compression:Response and mechanism
4
作者 Tiancheng Shan Zhonghui Li +7 位作者 Xin Zhang Haishan Jia Xiaoran Wang Enyuan Wang Yue Niu Dong Chen Weichen Sun Dongming Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期227-243,共17页
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun... Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment. 展开更多
关键词 Combined coal-rock pressure stimulated current Progressive failure process mechanISM Flow model
下载PDF
Mechanical Analysis of a Multi-Test String in High-Temperature and High-Pressure Deep Wells
5
作者 Zubing Tang 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2161-2170,共10页
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le... The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan). 展开更多
关键词 Test string high temperature and high pressure BUCKLING subdividing operation process mechanical model
下载PDF
Response characteristics of gas pressure under simultaneous static and dynamic load:Implication for coal and gas outburst mechanism 被引量:3
6
作者 Longyong Shu Liang Yuan +3 位作者 Qixian Li Wentao Xue Nannan Zhu Zhengshuai Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期155-171,共17页
Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the... Coal and gas outbursts are dynamic disasters in which a large mass of gas and coal suddenly emerges in a mining space within a split second.The interaction between the gas pressure and stress environment is one of the key factors that induce coal and gas outbursts.In this study,first,the coupling relationship between the gas pressure in the coal body ahead of the working face and the dynamic load was investigated using experimental observations,numerical simulations,and mine-site investigations.It was observed that the impact rate of the dynamic load on the gas-bearing coal can significantly change the gas pressure.The faster the impact rate,the speedier the increase in gas pressure.Moreover,the gas pressure rise was faster closer to the impact interface.Subsequently,based on engineering background,we proposed three models of stress and gas pressure distribution in the coal body ahead of the working face:static load,stress disturbance,and dynamic load conditions.Finally,the gas pressure distribution and outburst mechanism were investigated.The high concentration of gas pressure appearing at the coal body ahead of the working face was caused by the dynamic load.The gas pressure first increased gradually to a peak value and then decreased with increasing distance from the working face.The increase in gas pressure plays a major role in outburst initiation by resulting in the ability to more easily reach the critical points needed for outburst initiation.Moreover,the stronger the dynamic load,the greater the outburst initiation risk.The results of this study provide practical guidance for the early warning and prevention of coal and gas outbursts. 展开更多
关键词 Coal and gas outburst Gas pressure Dynamic load Outburst mechanism
下载PDF
Experimental and numerical study of hypervelocity impact damage on composite overwrapped pressure vessels
7
作者 Yong-Pan Duan Run-Qiang Chi +1 位作者 Bao-Jun Pang Yuan Cai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期58-72,共15页
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ... Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs. 展开更多
关键词 Orbital debris Hypervelocity impact Composite overwrapped pressure vessels Damage mechanisms
下载PDF
Effect of fractures on mechanical behavior of sand powder 3D printing rock analogue under triaxial compression
8
作者 LI Pi-mao JIANG Li-shuai +5 位作者 WEN Zhi-jie WU Chao-lei YANG Yi-ming PENG Xiao-han WU Quan-sen WU Quan-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2703-2716,共14页
In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.S... In practical engineering applications,rock mass are often found to be subjected to a triaxial stress state.Concurrently,defects like joints and fractures have a notable impact on the mechanical behavior of rock mass.Such defects are identified as crucial contributors to the failure and instability of the surrounding rock,subsequently impacting the engineering stability.The study aimed to investigate the impact of fracture geometry and confining pressure on the deformation,failure characteristics,and strength of specimens using sand powder 3D printing technology and conventional triaxial compression tests.The results indicate that the number of fractures present considerably influences the peak strength,axial peak strain and elastic modulus of the specimens.Confining pressure is an important factor affecting the failure pattern of the specimen,under which the specimen is more prone to shear failure,but the initiation,expansion and penetration processes of secondary cracks in different fracture specimens are different.This study confirmed the feasibility of using sand powder 3D printing specimens as soft rock analogs for triaxial compression research.The insights from this research are deemed essential for a deeper understanding of the mechanical behavior of fractured surrounding rocks when under triaxial stress state. 展开更多
关键词 sand powder 3D printing triaxial compression confining pressure fracture geometry mechanical behavior
下载PDF
Microstructure and properties of 35 kg large aluminum alloy flywheel housing components formed by squeeze casting with local pressure compensation
9
作者 Ju-fu Jiang Jing Yan +4 位作者 Ying-ze Liu Ning Ge Ying Wang Chang-jie Ding De-chao Zou 《China Foundry》 SCIE EI CAS CSCD 2024年第5期563-576,共14页
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ... The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting. 展开更多
关键词 squeeze casting local pressure compensation aluminum alloy microstructure mechanical properties large flywheel housing components
下载PDF
Experimental research on influence mechanism of loading rates on rock pressure stimulated currents 被引量:2
10
作者 Min Li Zhijun Lin +5 位作者 Shiliang Shi Deming Wang Yi Lu He Li Qing Ye Xiaonan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期243-250,共8页
The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under th... The study of pressure stimulated current(PSC)changes of rocks is significant to monitor dynamic disasters in mines and rock masses.The existing studies focus on change laws and mechanism of currents generated under the loading of rocks.An electrical and mechanics test system was established in this paper to explore the impacts of loading rates on PSCs.The results indicated that PSC curves of different rocks had different change laws under low/high loading rates.When the loading rate was relatively low,PSC curves firstly changed gently and then increased exponentially.Under high loading rates,PSC curves experienced the rapid increase stage,gentle increase stage and sudden change stage.The compressive strength could greatly affect the peak PSC in case of rock failure.The loading rate was a key factor in average PSC.Under low loading rates,the variations of PSCs conformed to the damage charge model of fracture mechanics,while they did not at the fracture moment.Under high loading rates,the PSCs at low stress didn’t fit the model due to the stress impact effects.The experimental results could provide theoretical basis for the influence of loading rates on PSCs. 展开更多
关键词 pressure stimulated current Loading rate Influence mechanism Peak current
下载PDF
Determination of critical state line(CSL)for silty-sandy iron ore tailings subjected to low-high confining pressures
11
作者 Nilo Cesar Consoli João Vítor de Azambuja Carvalho +4 位作者 Alexia Cindy Wagner Hugo Carlos Scheuermann Filho Inácio Carvalho Pedro Pazzoto Cacciari João Paulo de Sousa Silva 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1684-1695,共12页
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit... The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels. 展开更多
关键词 TAILINGS Iron ore tailings dry stacking Silty-sandy material Critical state soil mechanics High confining pressures Particle breakage
下载PDF
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
12
作者 Chendi Lou Heping Xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
13
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi Formation deep shale gas POROSITY PERMEABILITY rock mechanics high temperature and high pressure triaxial compression
下载PDF
Calculation of Vapour Pressure of Metals by Statistical-Mechanical Method With the Debye Model
14
作者 王正刚 罗玲 《Journal of Beijing Institute of Technology》 EI CAS 1992年第2期132-138,共7页
Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is define... Statistical expression of vapour pressure equations of metals is derived from the Debye model.The statistical distribution of T_(-p) ensemble is presented in an in-elab- orate mode and the partition function is defined.The vapour pressure of eleven metals have been calculated with the Debye equation and compared with those given by the E- instein equation and empirical equation.Comparison of results of calculation from dif- ferent methods show their evident accordance within the same orders of magnitude. 展开更多
关键词 thermodynamical models vapour pressure statistical mechanics Debye model CALCULATION
下载PDF
Stress release mechanism of deep bottom hole rock by ultra-high-pressure water jet slotting 被引量:1
15
作者 Hua-jian Wang Hua-Lin Liao +6 位作者 Jun Wei Jian-Sheng Liu Wen-Long Niu Yong-Wang Liu Zhi-Chuan Guan Hedi Sllami John-Paul Latham 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1828-1842,共15页
To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom... To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique. 展开更多
关键词 Hard rock SLOTTING Stress release Down hole pressures Poroelastic mechanics Fluid-structure Interaction Ultra-high-pressure water jet
下载PDF
Driving pressure decoded:Precision strategies in adult respiratory distress syndrome management
16
作者 Muhammad Adrish Sai Doppalapudi Dmitry Lvovsky 《World Journal of Critical Care Medicine》 2024年第2期15-18,共4页
Mechanical ventilation(MV)is an important strategy for improving the survival of patients with respiratory failure.However,MV is associated with aggravation of lung injury,with ventilator-induced lung injury(VILI)beco... Mechanical ventilation(MV)is an important strategy for improving the survival of patients with respiratory failure.However,MV is associated with aggravation of lung injury,with ventilator-induced lung injury(VILI)becoming a major concern.Thus,ventilation protection strategies have been developed to minimize complications from MV,with the goal of relieving excessive breathing workload,improving gas exchange,and minimizing VILI.By opting for lower tidal volumes,clinicians seek to strike a balance between providing adequate ventilation to support gas exchange and preventing overdistension of the alveoli,which can contribute to lung injury.Additionally,other factors play a role in optimizing lung protection during MV,including adequate positive end-expiratory pressure levels,to maintain alveolar recruitment and prevent atelectasis as well as careful consideration of plateau pressures to avoid excessive stress on the lung parenchyma. 展开更多
关键词 Driving pressure mechanical ventilation Lung-protective ventilation strategies Ventilator-induced lung injury
下载PDF
Driving pressure:A useful tool for reducing postoperative pulmonary complications
17
作者 Domenico Posa Fabio Sbaraglia +1 位作者 Giuliano Ferrone Marco Rossi 《World Journal of Critical Care Medicine》 2024年第3期91-94,共4页
The operating room is a unique environment where surgery exposes patients to non-physiological changes that can compromise lung mechanics.Therefore,raising clinicians’awareness of the potential risk of ventilator-ind... The operating room is a unique environment where surgery exposes patients to non-physiological changes that can compromise lung mechanics.Therefore,raising clinicians’awareness of the potential risk of ventilator-induced lung injury(VILI)is mandatory.Driving pressure is a useful tool for reducing lung complications in patients with acute respiratory distress syndrome and those undergoing elective surgery.Driving pressure has been most extensively studied in the context of single-lung ventilation during thoracic surgery.However,the awareness of association of VILI risk and patient positioning(prone,beach-chair,parkbench)and type of surgery must be raised. 展开更多
关键词 Ventilator-induced lung injury Protective ventilation Driving pressure mechanical ventilation Surgery room Single-lung ventilation Operative room SURGERY
下载PDF
Mechanical property and permeability of raw coal containing methane under unloading confining pressure 被引量:9
18
作者 Yin Guangzhi Li Wenpu +4 位作者 Jiang Changbao Li Minghui Li Xing Liu Hairu Zhang Qiangui 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期789-793,共5页
Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property a... Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure. 展开更多
关键词 Mining engineering Unloading confining pressure Coal containing methane mechanical property PERMEABILITY
下载PDF
INVESTIGATION INTO EFFECT OF SPRING PRESSURE ON PERFORMANCE OF BALANCED MECHANICAL SEALS 被引量:7
19
作者 SUN Jianjun GU Boqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期39-43,共5页
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak... The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals. 展开更多
关键词 Balanced mechanical seal Spring pressure Leakage rate Friction characteristic Fractal geometry
下载PDF
Influence of confi ning pressure and impact loading on mechanical properties of amphibolite and sericite-quartz schist 被引量:4
20
作者 Liu Shi Xu Jinyu Lv Xiaocong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期215-222,共8页
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pres... In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice. 展开更多
关键词 rock mechanics SHPB with confi ning pressure device confi ning pressure strain rate impact loading
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部