Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid compositi...Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).展开更多
The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ...The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nan...The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.展开更多
Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesi...Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance d...Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.展开更多
The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,e...The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.展开更多
The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over...The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).展开更多
Hydrogen energy is an important energy carrier,which is an ideal choice to meet energy demand and reduce harmful gas emissions.The green recycling of hydrogen energy depends on water electrolysis and hydrogen fuel cel...Hydrogen energy is an important energy carrier,which is an ideal choice to meet energy demand and reduce harmful gas emissions.The green recycling of hydrogen energy depends on water electrolysis and hydrogen fuel cells,which involves hydrogen oxidation reaction(HOR)and hydrogen evolution reaction(HER).The activity of HER/HOR in alkaline electrolyte,however,exhibits a significantly lower magnitude(2–3 orders)compared to that observed in an acidic medium,which hinders the development of alkaline water electrolysis and alkaline membrane fuel cells.Therefore,comprehending the characteristics of HOR/HER activity in alkaline electrolytes and elucidating its underlyingmechanismis a prerequisite for the designof advanced electrocatalysts.Based on this background,this reviewwill briefly summarize the explanations and controversies about the basic HOR mechanism,including bifunctional mechanismand hydrogen binding energy theory.Moreover,the crucial affecting factors of theHOR kinetics,such as dband center theory,interfacial water recombination,alkali metal cations and electronic effects,are discussed.Thus,based on the above theories,the design principle,catalytic performance,and latest progress ofHOR electrocatalysts are summarized.An outlook and future research perspectives of advanced catalysts for hydrogen energy recycling are addressed.This reviewis helpful to understand the latest development ofHORmechanismand design cost-effective and high-performance HOR electrocatalysts towards the production of clean renewable energies.展开更多
High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium va...High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively.展开更多
Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results in...Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.展开更多
The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were...The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.展开更多
The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. T...The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.展开更多
V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated...V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.展开更多
SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the second...SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.展开更多
The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the r...The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.展开更多
Mechanism of the cycloadditional formaldehyde has been investigated reaction between singlet with MP2/6-31G^* method, dichloro-germylidene and including geometry optimization, vibrational analysis and energies for t...Mechanism of the cycloadditional formaldehyde has been investigated reaction between singlet with MP2/6-31G^* method, dichloro-germylidene and including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cyeloaddition reaction between singlet dichloro-germylidene and formaldehyde has two competitive dominant reaction pathways, going with the formation of two side products (INT3 and INT4), simultaneously. Both of the two competitive reactions consist of two steps, two reactants firstly form a three-membered ring intermediate INT1 and a twisted four-membered ring intermediate INT2, respectively, both of which are barrier-free exothermic reactions of 41.5 and 72.3 kJ/mol; then INT1 isomerizes to a four-membered ring product P1 via transition state TS1, and INT2 isomerizes to a chlorine-traasfer product P2 via transition state TS2, with the barriers of 2.9 and 0.3 kJ/mol, respectively. Simultaneously, P1 and INT2 further react with formaldehyde to form INT3 and INT4, respectively, which are also barrier-free exothermic reaction of 74.9 and 88.1 kJ/mol.展开更多
The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results s...The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results show that this kind of reaction has similar mechanism, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Ge=C: gives a p→p donor-acceptor bond, thereby leading to the formation of intermediate. As the p→p donor-acceptor bond continues to strengthen, that is the C-O bond continues to shorten, the intermediate generates product (P+C2H4) via transition state. It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.展开更多
The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, i...The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.展开更多
基金supported by PTDC-01778/2022-NeuroDev3D,iNOVA4Health(UIDB/04462/2020 and UIDP/04462/2020)LS4FUTURE(LA/P/0087/2020)。
文摘Cells,tissues,and organs are constantly subjected to the action of mechanical forces from the extracellular environment-and the nervous system is no exception.Cell-intrinsic properties such as membrane lipid composition,abundance of mechanosensors,and cytoskeletal dynamics make cells more or less likely to sense these forces.Intrinsic and extrinsic cues are integrated by cells and this combined information determines the rate and dynamics of membrane protrusion growth or retraction(Yamada and Sixt,2019).Cell protrusions are extensions of the plasma membrane that play crucial roles in diverse contexts such as cell migration and neuronal synapse formation.In the nervous system,neurons are highly dynamic cells that can change the size and number of their pre-and postsynaptic elements(called synaptic boutons and dendritic spines,respectively),in response to changes in the levels of synaptic activity through a process called plasticity.Synaptic plasticity is a hallmark of the nervous system and is present throughout our lives,being required for functions like memory formation or the learning of new motor skills(Minegishi et al.,2023;Pillai and Franze,2024).
基金financially supported by the National Natural Science Foundation of China(No.52074356)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-06)+5 种基金the National Key R&D Program of China(No.2022YFC2904500)the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1183)Changsha Science and Technology Project,China(Outstanding Innovative Youth Training Program)Innovation driven program of Central South University(No.2023CXQD002)National 111 Project(No.B14034)the Fundamental Research Funds for the Central Universities of Central South University Project(No.50621747)。
文摘The depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite still lacked in-depth insight.Therefore,the depression mechanism of sulfite ions on sphalerite and Pb^(2+)activated sphalerite in the flotation separation of galena from sphalerite was further systematically investigated with experiments and density functional theory(DFT)calculations.The X-ray photoelectric spectroscopy(XPS)results,DFT calculation results,and frontier molecular orbital analysis indicated that sulfite ions were difficult to be adsorbed on sphalerite surface,suggesting that sulfite ions achieved depression effects on sphalerite through other non-adsorption mechanisms.First,the oxygen content in the surface of sphalerite treated with sulfite ions in creased,which enhanced the hydrophilicity of the sphalerite and further increased the difference in hydrophilicity between sphalerite and galena.Then,sulfite ions were chelated with lead ions to form PbSO_(3)in solution.The hydrophilic PbSO_(3)was more easily adsorbed on sphalerite than galena.The interaction between sulfite ions and lead ions could effectively inhibit the activation of sphalerite.In addition the UV spectrum showed that after adding sulfite ions,the peak of perxanthate in the sphalerite treated xanthate solution was significantly stronger than that in the galena with xanthate solution,indicating that xanthate interacted more readily with sulfite ions and oxygen mo lecules within the sphalerite system,leading to the formation of perxanthate.However,sulfite ions hardly depressed the flotation of ga lena and could promote the flotation of galena to some extent.This study deepened the understanding of the depression mechanism o sulfite ions on sphalerite and Pb^(2+)activated sphalerite.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.12132003)State Key Laboratory of Explosion Science and Technology(Grant No.QNKT20-07)。
文摘The shock-induced reaction mechanism and characteristics of Ni/Al system,considering an Al nanoparticle-embedded Ni single crystal,are investigated through molecular dynamics simulation.For the shock melting of Al nanoparticle,interfacial crystallization and dissolution are the main characteristics.The reaction degree of Al particle first increases linearly and then logarithmically with time driven by rapid mechanical mixing and following dissolution.The reaction rate increases with the decrease of particle diameter,however,the reaction is seriously hindered by interfacial crystallization when the diameter is lower than 9 nm in our simulations.Meanwhile,we found a negative exponential growth in the fraction of crystallized Al atoms,and the crystallinity of B2-NiAl(up to 20%)is positively correlated with the specific surface area of Al particle.This can be attributed to the formation mechanism of B2-NiAl by structural evolution of finite mixing layer near the collapsed interface.For shock melting of both Al particle and Ni matrix,the liquid-liquid phase inter-diffusion is the main reaction mechanism that can be enhanced by the formation of internal jet.In addition,the enhanced diffusion is manifested in the logarithmic growth law of mean square displacement,which results in an almost constant reaction rate similar to the mechanical mixing process.
基金the Science and Technology Planning Project of Guangdong Province(2016B090934002)Guangdong Provincial Natural Science Foundation(2023A1515011640)for financial support.
文摘Daidzein has been widely used in pharmaceuticals,nutraceuticals,cosmetics,feed additives,etc.Its preparation process and related reaction mechanism need to be further investigated.A cost-effective process for synthesizing daidzein was developed in this work.In this article,a two-step synthesis of daidzein(Friedel–Crafts acylation and[5+1]cyclization)was developed via the employment of trifluoromethanesulfonic acid(TfOH)as an effective promoting reagent.The effect of reaction conditions such as solvent,the amount of TfOH,reaction temperature,and reactant ratio on the conversion rate and the yield of the reaction,respectively,was systematically investigated,and daidzein was obtained in 74.0%isolated yield under optimal conditions.Due to the facilitating effect of TfOH,the Friedel–Crafts acylation was completed within 10 min at 90℃ and the[5+1]cyclization was completed within 180 min at 25℃.In addition,a possible reaction mechanism for this process was proposed.The results of the study may provide useful guidance for industrial production of daidzein on a large scale.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金funding from the Key Research and Development Projects of Zhejiang Province(2022C01236)and the Ningbo Top Talent Project.
文摘Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors.However,the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process.In this study,three porous carbons were synthesized from lignin by spray drying and chemical activation with vary-ing KOH ratios.The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio.Thermogravimetric-mass spectrometry(TG-MS)was employed to track the molecular fragments generated during the pyrolysis of KOH-activated lignin,and the mechanism of the thermochemical conversion was investigated.During the thermochemical conversion of lignin,KOH facili-tated the removal of H2 and CO,leading to the formation of not only more micropores and mesopores,but also more ordered carbon structures.The pore structure exhibited a greater impact than the carbon structure on the electrochemical performance of porous carbon.The optimized porous carbon exhibited a capacitance of 256 F g-1 at a current density of 0.2 A g-1,making it an ideal electrode material for high-performance supercapacitors.
基金funded by the Key Projects of Xinjiang Production and Construction Corps(2022AB007)the Key Projects of innovation team of Xinjiang eighth division Construction Corps 2023TD04)Liaoning Innovation Capability Fund(2021-NLTS-12-02).
文摘The catalytic performance of different acidic catalysts for diethyl oxalate synthesis from the one-step transesterification of dimethyl oxalate and ethanol was evaluated.The effects of different factors(e.g.,acidity,electron accepting capacity,cations type and crystalline water)on the catalytic activity of acidic catalysts were investigated respectively.It was proposed and confirmed that the transesterification reaction catalyzed by a Lewis acid(FeCl3)and a Bronsted acid(H2SO4)follows a first-order kinetic reaction process.In addition,the Lewis acid-catalyzed transesterification processes with different ester structures were used to further explore and understand the speculated reaction mechanism.This work enriches the theoretical understanding of acid-catalyzed transesterification reactions and is of great significance for the development of highly active catalysts for diethyl oxalate synthesis,diminishing the industrial production cost of diethyl oxalate,and developing downstream bulk or high-value-added industrial products.
基金Project(cstb2022nscq-msx0801)supported by the Natural Science Foundation of Chongqing,ChinaProject(52004044)supported by the National Natural Science Foundation of China+2 种基金Project(ckrc2022030)supported by the Foundation of Chongqing University of Science and Technology,ChinaProject(YKJCX2220216)supported by the Graduate Research Innovation Project of Chongqing University of Science and Technology,ChinaProject(202311551007)supported by the National Undergraduate Training Program for Innovation and Entrepreneurship,China。
文摘The oxidation behavior of ferrovanadium spinel(FeV_(2)O_(4)),synthesized via high-temperature solid-state reaction,was investigated using thermogravimetry,X-ray diffractometry,and X-ray photoelectron spectroscopy over the temperature range of 450–700℃.The results revealed that the oxidation process of FeV_(2)O_(4)can be divided into three stages with the second stage being responsible for maximum weight gain due to oxidation.Three classical methods were employed to analyze the reaction mechanisms and model functions for distinct oxidation stages.The random nucleation and subsequent growth(A_(3))kinetic model was found to be applicable to both initial and secondary stage.The third stage of oxidation was consistent with the three-dimensional diffusion,spherical symmetry(D_(3))kinetic mode.Both the model-function method and the model-free method were utilized to investigate the apparent activation energy of the oxidation reaction at each stage.It was found that the intermediates including Fe_(3)O_(4),VO_(2),V_(2)O_(3),and Fe_(2.5)V_(7.11)O_(16),played significant roles in the oxidation process prior to the final formation of FeVO_(4)and V_(2)O_(5)through oxidation of FeV_(2)O_(4).
基金supported by the National Natural Science Foundation of China(22234005 and 21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)Young Academic Leaders of the Qing Lan Project of Jiangsu Province(SUJIAOSHIHAN[2022]No.29).
文摘Hydrogen energy is an important energy carrier,which is an ideal choice to meet energy demand and reduce harmful gas emissions.The green recycling of hydrogen energy depends on water electrolysis and hydrogen fuel cells,which involves hydrogen oxidation reaction(HOR)and hydrogen evolution reaction(HER).The activity of HER/HOR in alkaline electrolyte,however,exhibits a significantly lower magnitude(2–3 orders)compared to that observed in an acidic medium,which hinders the development of alkaline water electrolysis and alkaline membrane fuel cells.Therefore,comprehending the characteristics of HOR/HER activity in alkaline electrolytes and elucidating its underlyingmechanismis a prerequisite for the designof advanced electrocatalysts.Based on this background,this reviewwill briefly summarize the explanations and controversies about the basic HOR mechanism,including bifunctional mechanismand hydrogen binding energy theory.Moreover,the crucial affecting factors of theHOR kinetics,such as dband center theory,interfacial water recombination,alkali metal cations and electronic effects,are discussed.Thus,based on the above theories,the design principle,catalytic performance,and latest progress ofHOR electrocatalysts are summarized.An outlook and future research perspectives of advanced catalysts for hydrogen energy recycling are addressed.This reviewis helpful to understand the latest development ofHORmechanismand design cost-effective and high-performance HOR electrocatalysts towards the production of clean renewable energies.
基金This work was supported by the National Natural Science Foundation of China(No.52004044)the Natural Science Foundation of Chongqing,China(Nos.cstb2022nscqmsx0801 and cstc2021jcyj-msxmx0882)+2 种基金the Foundation of Chongqing University of Science and Technology(No.ckrc2022030)the Graduate Research Innovation Project of Chongqing University of Science and Technology(No.YKJCX2220216)the National Undergraduate Training Program for Innovation and Entrepreneurship(No.202311551007).
文摘High-temperature oxidation behavior of ferrovanadium(FeV_(2)O_(4))and ferrochrome(FeCr_(2)O_(4))spinels is crucial for the application of spinel as an energy material,as well as for the clean usage of high-chromium vanadium slag.Herein,the nonisothermal oxidation behavior of FeV_(2)O_(4)and FeCr_(2)O_(4)prepared by high-temperature solid-state reaction was examined by thermogravimetry and X-ray diffraction(XRD)at heating rates of 5,10,and 15 K/min.The apparent activation energy was determined by the Kissinger-Akahira-Sunose(KAS)method,whereas the mechanism function was elucidated by the Malek method.Moreover,in-situ XRD was conducted to deduce the phase transformation of the oxidation mechanism for FeV_(2)O_(4)and FeCr_(2)O_(4).The results reveal a gradual increase in the overall apparent activation energies for FeV_(2)O_(4)and FeCr_(2)O_(4)during oxidation.Four stages of the oxidation process are observed based on the oxidation conversion rate of each compound.The oxidation mechanisms of FeV_(2)O_(4)and FeCr_(2)O_(4)are complex and have distinct mechanisms.In particular,the chemical reaction controls the entire oxidation process for FeV_(2)O_(4),whereas that for FeCr_(2)O_(4)transitions from a three-dimensional diffusion model to a chemical reaction model.According to the in-situ XRD results,numerous intermediate products are observed during the oxidation process of both compounds,eventually resulting in the final products FeVO_(4)and V2O_(5)for FeV_(2)O_(4)and Fe_(2)O_(3)and Cr_(2)O_(3)for FeCr_(2)O_(4),respectively.
基金Project(51206081)supported by the National Natural Science Foundation of China
文摘Sol-gel method was employed to combine Al and iron-oxide to form nanocomposites (nano-Al/xero-Fe2O3 and micro-Al/xero-Fe2O3). SEM, EDS and XRD analyses were used to characterize the nanocomposites and the results indicated that nano-Al and micro-Al were compactly wrapped by amorphous iron-oxide nanoparticles (about 20 nm), respectively. The iron-oxide showed the mass ratio of Fe to O as similar as that in Fe2O3. Thermal analyses were performed on two nanocomposites, and four simple mixtures (nano-Al+xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al+xero-Fe2O3, and micro-Al+micro-Fe2O3) were also analyzed. There were not apparent distinctions in the reactions of thermites fueled by nano-Al. For thermites fueled by micro-Al, the DSC peak temperatures of micro-Al/Xero-Fe2O3 were advanced by 68.1 ℃ and 76.8 ℃ compared with micro-Al+xero-Fe2O3 and micro-Al+micro-Fe2O3, respectively. Four thermites, namely, nano-Al/xero-Fe2O3, nano-Al+micro-Fe2O3, micro-Al/xero-Fe2O3, and micro-Al+micro-Fe2O3, were heated from ambient temperature to 1020 ℃, during which the products at 660 ℃ and 1020 ℃ were collected and analyzed by XRD. Crystals of Fe, FeAl2O4, Fe3O4,α-Fe2O3, Al,γ-Fe2O3, Al2.667O4, FeO andα-Al2O3 were indexed in XRD patterns. For each thermite, according to the specific products, the possible equations were given. Based on the principle of the minimum free energy, the most reasonable equations were inferred from the possible reactions.
基金Project(2006AA068128)supported by the Hi-tech Research and Development Program of China
文摘The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
基金Project(51304245)supported by the National Natural Science Foundation of ChinaProject(2014T70691)supported by the Postdoctoral Science Foundation of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject supported by the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,China
文摘The effects of Ca-based additives on roasting properties of low-grade molybdenum concentrate were studied. The resultsshow that calcium-based additives can react with molybdenum concentrate to form CaSO4 and CaMoO4. The initial oxidationtemperature of MoS2 is 450℃, while the formation of CaMoO4 and CaSO4 occurs above 500℃. The whole calcification reactionsare nearly completed between 600 and 650℃. However, raising the temperature further helps for the formation of CaMoO4 but isdisadvantageous to sulfur fixing rate and molybdenum retention rate. Calcification efficiency of Ca-based additives follows theorder: Ca(OH)2〉CaO〉CaCO3. With increasing the dosage of Ca(OH)2, the molybdenum retention rate and sulfur-fixing rate rise, butexcessive dosages would consume more acid during leaching process. The appropriate mass ratio of Ca(OH)2 to molybdenumconcentrate is 1:1. When roasted at 650 ℃ for 90 min, the molybdenum retention rate and the sulfur-fixing rate of low-grademolybdenum concentrate reach 100% and 92.92%, respectively, and the dissolution rate of molybdenum achieves 99.12% withcalcines being leached by sulphuric acid.
基金supported by the National Natural Science Foundation of China(51306034)Key Research&Development Projects of Jiangsu Province(BE2015677)the National Basic Research Program of China(2013CB228505)~~
文摘V2O5/TiO2-ZrO2 catalysts containing various amounts of WO3 were synthesized.The catalyst morphologies,catalytic performances,and reaction mechanisms in the selective catalytic reduction of NOx by NH3 were investigated using in situ diffuse-reflectance infrared Fourier-transform spectroscopy,temperature-programmed reduction(TPR),X-ray diffraction,and the Brunauer-Emmett-Teller(BET) method.The BET surface area of the triple oxides increased with increasing ZrO2 doping but gradually decreased with increasing WO3 loading.Addition of sufficient WO3 helped to stabilize the pore structure and the combination of WO3 and ZrO2 improved dispersion of all the metal oxides.The mechanisms of reactions using V2O5-9%WO3/TiO2-ZrO2 and V2O5-9%WO3/TiO2were compared by using either a single or mixed gas feed and various pretreatments.The results suggest that both reactions followed the Eley-Ridel mechanism;however,the dominant acid sites,which depended on the addition of WO3 or ZrO2,determined the pathways for NOx reduction,and involved[NH4^+-NO-Bronsted acid site]^* and[NH2-NO-Lewis acid site]^* intermediates,respectively.NH3-TPR and H2-TPR showed that the metal oxides in the catalysts were not reduced by NH3 and O2did not reoxidize the catalyst surfaces but participated in the formation of H2O and NO2.
基金Project(51104053)supported by the National Natural Science Foundation of ChinaProject(E2012208047)supported by the Natural Science Foundation of Hebei Province,China
文摘SiO2 in calcium aluminate slag exists in the form of γ-2CaO·SiO2 which is more stable than β-2CaO·SiO2. However, it is decomposed by sodium carbonate solution during leaching process, leading to the secondary reaction. The extent of secondary reaction and reaction mechanism of calcium aluminate slag were studied using XRD. The results show that the decomposition rate of γ-2CaO·SiO2 increases with the increase in leaching time and sodium carbonate concentration. The main products of secondary reaction are the mixture of hydrogarnet and sodium hydrate alumina-silicate. SiO2 concentration rises firstly and then drops with the increase of leaching temperature. XRD results indicate that the stable product of secondary reaction at low temperature is hydrogarnet. But hydrogarnet is transformed into sodium hydrate alumina-silicate at high temperature.
文摘The mechanism of the cycloaddition reaction between singlet dimethyl-silylene carbene and acetone has been investigated with density functional theory, From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The presented rule of this reaction: the [2+2] cycloaddition effect between the πorbital of dimethyl-silylene carbene and the π orbital of π-bonded compounds leads to the formation of a twisty four-membered ring intermediate and a planar four-membered ring product; The unsaturated property of C atom from carbene in the planar four-membered ring product,resulting in the generation of CH3-transfer product and silicic bis-heterocyclic compound.
文摘Mechanism of the cycloadditional formaldehyde has been investigated reaction between singlet with MP2/6-31G^* method, dichloro-germylidene and including geometry optimization, vibrational analysis and energies for the involved stationary points on the potential energy surface. From the potential energy profile, we predict that the cyeloaddition reaction between singlet dichloro-germylidene and formaldehyde has two competitive dominant reaction pathways, going with the formation of two side products (INT3 and INT4), simultaneously. Both of the two competitive reactions consist of two steps, two reactants firstly form a three-membered ring intermediate INT1 and a twisted four-membered ring intermediate INT2, respectively, both of which are barrier-free exothermic reactions of 41.5 and 72.3 kJ/mol; then INT1 isomerizes to a four-membered ring product P1 via transition state TS1, and INT2 isomerizes to a chlorine-traasfer product P2 via transition state TS2, with the barriers of 2.9 and 0.3 kJ/mol, respectively. Simultaneously, P1 and INT2 further react with formaldehyde to form INT3 and INT4, respectively, which are also barrier-free exothermic reaction of 74.9 and 88.1 kJ/mol.
文摘The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results show that this kind of reaction has similar mechanism, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Ge=C: gives a p→p donor-acceptor bond, thereby leading to the formation of intermediate. As the p→p donor-acceptor bond continues to strengthen, that is the C-O bond continues to shorten, the intermediate generates product (P+C2H4) via transition state. It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.
基金supported by the National Natural Science Foundation of China (91545104,21576256,21473182,21273230,21273005)the Youth Innovation Promotion Association of the Chinese Academy of Sciences~~
文摘The methanol to olefins (MTO) reaction was performed over ZSM‐5 zeolite at 300℃ under various methanol weight hourly space velocity (WHSV) values. During these trials, the catalytic perfor‐mance was assessed, in addition to the formation and function of organic compounds retained in the zeolite. Analysis of reaction effluents and confined organics demonstrated a dual‐cycle reaction mechanism when employing ZSM‐5. The extent of the hydrogen transfer reaction, a secondary reac‐tion in the MTO process, varied as the catalyst‐methanol contact time was changed. In addition, 12C/13C‐methanol switch experiments indicated a relationship between the dual‐cycle mechanism and the extent of the hydrogen transfer reaction. Reactions employing a low methanol WHSV in conjunction with a long contact time favored the hydrogen transfer reaction to give alkene products and promoted the generation and accumulation of retained organic species, such as aromatics and methylcyclopentadienes, which enhance the aromatic cycle. When using higher WHSV values, the reduced contact times lessened the extent of the hydrogen transfer reaction and limited the genera‐tion of methylcyclopentadienes and aromatic species. This suppressed the aromatic cycle, such that the alkene cycle became the dominant route during the MTO reaction.