Most existing media access control(MAC) protocols in power line communication(PLC) networks just discard the colliding data packets when collision occurs.The collision deteriorates throughput and delay performance of ...Most existing media access control(MAC) protocols in power line communication(PLC) networks just discard the colliding data packets when collision occurs.The collision deteriorates throughput and delay performance of system under high traffic conditions.This article presents a novel media access scheme with fast collision resolution for in-home power line networks.It works by first recognizing the colliding stations through detecting the inserted unique ID sequence ahead of data packets,then the source nodes retransmitting their packets immediately after the collision slot.The proposed protocol maintains the benefits of ALOHA systems.It needs no scheduling overhead and is suitable for bursty sources,such as multimedia data packets.Computer simulations have demonstrated that this approach can achieve high throughput due to its ability of resolving collisions.展开更多
Due to the characteristics of the underwater acoustic channel, such as long propagation delay and low available bandwidth, the media access control (MAC) protocol designed for underwater acoustic sensor networks (UWAS...Due to the characteristics of the underwater acoustic channel, such as long propagation delay and low available bandwidth, the media access control (MAC) protocol designed for underwater acoustic sensor networks (UWASNs) is quite different from that for terrestrial wireless sensor networks. In this paper, we propose a MAC protocol for the UWASNs, named the funneling MAC (FMAC-U), which is a contention-based MAC protocol with a three-way handshake. The FMAC-U protocol uses an improved three-way handshake mechanism and code division multiple access (CDMA) based technology for request-to-send (RTS) signals transmitting to the sink in order that the sink can receive packets from multiple neighbors in a fixed order during each round of handshakes. The mechanism reduces the packet collisions and alleviates the funneling effect, especially alleviating the choke point of the UWASNs. Simulation results show that the proposed FMAC-U protocol achieves higher throughput, smaller packet drop ratio, lower end-to-end delay, and lower overhead of the control packet compared to the existing MAC protocols for UWASNs.展开更多
This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficientl...This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficiently on the basis of both the spatial reuse of MAC address and the mapping of geographical position.By adjusting the communication range of sensor nodes,VGSR algorithm can minimize the size of MAC address and meanwhile guarantee the connectivity of the sensor network.Theoretical analysis and experimental results show that VGSR algorithm is not only of low energy cost,but also scales well with the network size,with its performance superior to that of other existing algorithms.展开更多
In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on env...In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.展开更多
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas...The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.展开更多
In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this pr...In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this protocol, the CR node maps the channel state as a vector, and the transmitter and the receiver obtain the final channel map through an AND operation to prepare for an optional channel set. Data from the upper application layer are classified into two priority levels according to the QoS requirement. The data of each level relate to different contention windows so that the priority of real time data can be guaranteed. A two-dimensional discrete-time Markov chain is utilized to evaluate the system performance, and mathematical expressions of the system throughput are derived. Simulation results show that compared with the IEEE 802. 11 distributed coordination function (DCF), the proposed MAC protocol can achieve higher throughput.展开更多
针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间...针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间的时隙请求等问题,提出了一种高吞吐量低时延MAC(high throughput low delay MAC,HLMAC)协议。通过设计一种新的超帧结构,使节点及时得到时隙分配信息,大大降低数据接入时延;通过更新时隙请求量和合并同一对节点的时隙请求,增加了数据发送量,提高了网络吞吐量。理论分析表明了HLMAC协议的有效性,仿真结果显示它比ES-MAC协议增加了65.7%的网络吞吐量,同时降低了30%的接入时延。展开更多
文摘Most existing media access control(MAC) protocols in power line communication(PLC) networks just discard the colliding data packets when collision occurs.The collision deteriorates throughput and delay performance of system under high traffic conditions.This article presents a novel media access scheme with fast collision resolution for in-home power line networks.It works by first recognizing the colliding stations through detecting the inserted unique ID sequence ahead of data packets,then the source nodes retransmitting their packets immediately after the collision slot.The proposed protocol maintains the benefits of ALOHA systems.It needs no scheduling overhead and is suitable for bursty sources,such as multimedia data packets.Computer simulations have demonstrated that this approach can achieve high throughput due to its ability of resolving collisions.
基金(No. 2009AA093601-3) supported by the National High-Tech R & D Program (863) of China
文摘Due to the characteristics of the underwater acoustic channel, such as long propagation delay and low available bandwidth, the media access control (MAC) protocol designed for underwater acoustic sensor networks (UWASNs) is quite different from that for terrestrial wireless sensor networks. In this paper, we propose a MAC protocol for the UWASNs, named the funneling MAC (FMAC-U), which is a contention-based MAC protocol with a three-way handshake. The FMAC-U protocol uses an improved three-way handshake mechanism and code division multiple access (CDMA) based technology for request-to-send (RTS) signals transmitting to the sink in order that the sink can receive packets from multiple neighbors in a fixed order during each round of handshakes. The mechanism reduces the packet collisions and alleviates the funneling effect, especially alleviating the choke point of the UWASNs. Simulation results show that the proposed FMAC-U protocol achieves higher throughput, smaller packet drop ratio, lower end-to-end delay, and lower overhead of the control packet compared to the existing MAC protocols for UWASNs.
基金supported by the National Natural Science Foundation of China(Grant Nos.60572146,60372048 and 60496316).
文摘This paper presents a novel distributed media access control(MAC)address assignment algorithm,namely virtual grid spatial reusing(VGSR),for wireless sensor networks,which reduces the size of the MAC address efficiently on the basis of both the spatial reuse of MAC address and the mapping of geographical position.By adjusting the communication range of sensor nodes,VGSR algorithm can minimize the size of MAC address and meanwhile guarantee the connectivity of the sensor network.Theoretical analysis and experimental results show that VGSR algorithm is not only of low energy cost,but also scales well with the network size,with its performance superior to that of other existing algorithms.
基金Supported by the National Natural Science Foundation of China (No. 60972038)the Jiangsu Province Universities Natural Science Research Key Grant Project (07KJA-51006)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200911)Jiangsu Province Graduate In-novative Research Plan (CX09B_149Z)
文摘In this paper, we propose an aware-based adaptive opportunistic retransmission control scheme for wireless multimedia Mesh networks. The proposed scheme provides maximum retransmis-sion count optimization based on environment-aware to improve packet relay probability. The scheme discriminates the types of packet loss in wireless link by means of environment information and selects the retransmission count by taking the IEEE 802.11 wireless channel characteristics into consideration. Furthermore, the maximum retransmission count of MAC is adjusted adaptively. Extensive simulations demonstrate that the proposed scheme significantly reduces packet collision probability and packet loss rate, and thus improves network throughput.
基金Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia。
文摘The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay.
基金The National Science and Technology Major Project( No. 2010ZX03006-002-01 )the National Basic Research Program of China ( 973 Program) ( No. 2011CB302905)the Science and Technology Support Program of Jiangsu Province ( No. BE2011177)
文摘In order to improve the throughput performance of the secondary users (SUs) in the cognitive radio (CR) environment, a quality of service (QoS) based media access control (MAC) protocol is proposed. In this protocol, the CR node maps the channel state as a vector, and the transmitter and the receiver obtain the final channel map through an AND operation to prepare for an optional channel set. Data from the upper application layer are classified into two priority levels according to the QoS requirement. The data of each level relate to different contention windows so that the priority of real time data can be guaranteed. A two-dimensional discrete-time Markov chain is utilized to evaluate the system performance, and mathematical expressions of the system throughput are derived. Simulation results show that compared with the IEEE 802. 11 distributed coordination function (DCF), the proposed MAC protocol can achieve higher throughput.
文摘针对现有能够应用于太赫兹超高速无线网络的能量和频谱感知的媒介接入控制(energy and spectrum-aware media access control,ES-MAC)及IEEE802.15.3c协议存在的时隙申请量未及时更新、超帧结构不合理及分配时隙时未合并同一对节点之间的时隙请求等问题,提出了一种高吞吐量低时延MAC(high throughput low delay MAC,HLMAC)协议。通过设计一种新的超帧结构,使节点及时得到时隙分配信息,大大降低数据接入时延;通过更新时隙请求量和合并同一对节点的时隙请求,增加了数据发送量,提高了网络吞吐量。理论分析表明了HLMAC协议的有效性,仿真结果显示它比ES-MAC协议增加了65.7%的网络吞吐量,同时降低了30%的接入时延。