This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can s...This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.展开更多
Static electromagnetic fields are studied based on standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of ...Static electromagnetic fields are studied based on standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions, several novel theoretical results are obtained. It is found that, for isotropic media, electric or magnetic potentials are scalar; while for anisotropic media, they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media.展开更多
With a porous medium regarded as an immiscible mixture of multiphase and each phase as a miscible mixture of multi constituent, a systematical research on the kinematics and field equations for porous media is carrie...With a porous medium regarded as an immiscible mixture of multiphase and each phase as a miscible mixture of multi constituent, a systematical research on the kinematics and field equations for porous media is carried out from the point of view of mixture theory. It is shown that the motion of each phase is the mathematical average of the motions of all constituents in the phase, and that the motion of porous media may be described as the motion of the skeleton and the relative motion of each phase with respect to the skeleton. The influence of mass exchange between different constituents in each phase and the influence of mass exchange of same constituent between different phases in porous media are considered in field equations which are self consistent in theory. All the field equations in the references are special cases of the equations proposed in this paper.展开更多
The static electromagnetic fields are studied here based on the standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are deduced. By introducing ...The static electromagnetic fields are studied here based on the standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are deduced. By introducing a set of new potential functions of order 2, several novel theoretical results were obtained: The classical potential functions of order 1 can be expressed by the new potential functions of order 2, the electric or magnetic potentials are scalar for isotropic media, and vector for anisotropic media. The amplitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media.展开更多
Challenges and recent developments associated with writability issues in high-anisotropy perpendicular recording media are reviewed. The writing field is limited by the high coercivity caused by the high anisotropy. S...Challenges and recent developments associated with writability issues in high-anisotropy perpendicular recording media are reviewed. The writing field is limited by the high coercivity caused by the high anisotropy. Some new alterna- tives are proposed to solve the writability issues, including texture-tilting-assisted, domain-wall-assisted, energy-assisted magnetic recording technologies, and so on, In addition, we propose new alternatives for the next-generation of magnetic recording media.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.40874045)Special Funds for Sciences and Technology Research of Public Welfare Trades(Grant Nos. 200811021 and 201011042)
文摘This paper applies the convolutional differentiator method, based on generalized Forsyte orthogonal polynomial (CFPD), to simulate the seismic wave propagation in two-phase media. From the numerical results we can see that three types of waves, fast P-waves, S-waves and slow P-waves, can be observed in the seismic wave field. The experiments on anisotropic models demonstrate that the wavefront is elliptic instead of circular and S-wave splitting occurs in anisotropic two-phase media. The research has confirmed that the rules of elastic wave propagation in fluid-saturated porous media are controlled by Biot's theory. Experiment on a layered fault model shows the wavefield generated by the interface and the fault very well, indicating the effectiveness of CFPD method on the wavefield modeling for real layered media in the Earth. This research has potential applications to the investigation of Earth's deep structure and oil/gas exploration.
基金supported by the National Natural Science Foundation of China (No.50778179)
文摘Static electromagnetic fields are studied based on standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions, several novel theoretical results are obtained. It is found that, for isotropic media, electric or magnetic potentials are scalar; while for anisotropic media, they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media.
文摘With a porous medium regarded as an immiscible mixture of multiphase and each phase as a miscible mixture of multi constituent, a systematical research on the kinematics and field equations for porous media is carried out from the point of view of mixture theory. It is shown that the motion of each phase is the mathematical average of the motions of all constituents in the phase, and that the motion of porous media may be described as the motion of the skeleton and the relative motion of each phase with respect to the skeleton. The influence of mass exchange between different constituents in each phase and the influence of mass exchange of same constituent between different phases in porous media are considered in field equations which are self consistent in theory. All the field equations in the references are special cases of the equations proposed in this paper.
文摘The static electromagnetic fields are studied here based on the standard spaces of the physical presentation, and the modal equations of static electromagnetic fields for anisotropic media are deduced. By introducing a set of new potential functions of order 2, several novel theoretical results were obtained: The classical potential functions of order 1 can be expressed by the new potential functions of order 2, the electric or magnetic potentials are scalar for isotropic media, and vector for anisotropic media. The amplitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results, we discuss the laws of static electromagnetic fields for anisotropic media.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51025101,51101095,and 11274214)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1156)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20121404130001)the Shanxi Province Foundations,China(Grant Nos.2011021021-1,[2012]10,and[2013]9)
文摘Challenges and recent developments associated with writability issues in high-anisotropy perpendicular recording media are reviewed. The writing field is limited by the high coercivity caused by the high anisotropy. Some new alterna- tives are proposed to solve the writability issues, including texture-tilting-assisted, domain-wall-assisted, energy-assisted magnetic recording technologies, and so on, In addition, we propose new alternatives for the next-generation of magnetic recording media.