[Objective] This study aimed to analyze the genetic relationships among Medicago sativa,Medicago falcata and Trigonella foenum-graecum.[Method] ISSR technique was adopted to determine their genetic relationships.[Resu...[Objective] This study aimed to analyze the genetic relationships among Medicago sativa,Medicago falcata and Trigonella foenum-graecum.[Method] ISSR technique was adopted to determine their genetic relationships.[Result] M.sativa,M.falcate and T.foenum-graecum had a broad genetic base.T.foenum-graecum shared closer relationship with M.falcata rather than M.sativa.The study on relationship between M.sativa and T.foenum-graecum was advantageous to identify disputable transition types.But a boundary should be found to identify species to be M.sativa or T.foenum-graecum.[Conclusion] This study will provide reference for identifying some disputable transition types.展开更多
[Objective] The experiment explored of resistance of different Medicago sativa through synthetic variations of all physiological indexes and the correlation analysis between physiological activity and damage degree af...[Objective] The experiment explored of resistance of different Medicago sativa through synthetic variations of all physiological indexes and the correlation analysis between physiological activity and damage degree after thrips damage. [Method] According to studying physiological activity (POD activity, SOD activity, PPO activity, PAL activity, MDA content and free proline content) of alfalfa in alfalfa resistance to different number of thrips, the correlation between physiological activity and resistance was investigated. [Result] It was shown that there were negative correlations among POD, SOD, PPO, PAL, MDA, free praline and the number of thrips, and there were negative correlations among POD, SOD, PPO, PAL, MDA, free praline and CAT. The content changes of POD,SOD,PPO,CAT,MDA and free proline in high resistant alfalfa were slow and PAL was quick and the activities of PPO,PAL,CAT were high, and the activities of POD、SOD were low. [Conclusion] The research provided theoretical basis and materials for identifying resistance varieties of alfalfa to thrip.展开更多
pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical p...pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.展开更多
[Objective] The aim was to study the phytoremediation of heavy metal pollution in river sediment by Medicago sativa L.,so as to provide reliable references for the phytoremediation of heavy metal pollution in river se...[Objective] The aim was to study the phytoremediation of heavy metal pollution in river sediment by Medicago sativa L.,so as to provide reliable references for the phytoremediation of heavy metal pollution in river sediment.[Method] The air-dried,screened and mixed sediment was put in rectangular PVC box(0.6 m×0.5 m×0.4 m) with seepage vent at the bottom,and the water holding capacity(WHC) of sediment was kept at 30%-60% by deionized water.The seeds of Medicago sativa L.were sown in April 2010,and seedlings were thinned after 7 d.Samples were collected from rhizosphere soil every 30 d,and were used to determine the content of heavy metals,bacteria quantity and enzyme activity in sediment.In addition,the accumulation of heavy metals in the roots,stems and leaves of plant was measured after harvest in October.[Result] Different parts of Medicago sativa L.varied in accumulation capacity to different heavy metals.The accumulation amount of Zn in Medicago sativa L.was the highest,especially in roots.Meanwhile,the accumulation amount of heavy metals like Ni,Cr,Cu and Pb in roots was higher than that of stems and leaves.In contrast,Mn was mainly accumulated in leaves and its amount accounted for 42.47% of the total amount in plant.Besides,the accumulation amount of all heavy metals was the lowest in stems.Ni,Cr,Cu and Pb could be degraded more effectively than Mn,and increasing the planting time and sowing times of crop was beneficial to the degradation of heavy metals.After planted Medicago sativa L.,the quantity of microorganisms in sediment went up obviously,and dehydrogenase activity also showed an increaseing trend.[Conclusion] Medicago sativa L.has certain restoring effect on Zn,Ni,Cr,Cu and Pb,and could be used to restore heavy metal pollution in river sediment.展开更多
[ Objective] The paper presents the diumal changes of photosynthesis and transpiration of different alfalfa varieties and their relationship with the associated physiological and ecological factors during branching st...[ Objective] The paper presents the diumal changes of photosynthesis and transpiration of different alfalfa varieties and their relationship with the associated physiological and ecological factors during branching stage, so as to provide a basis for the development, utilization, and breed- ing of alfalfa. [ Method] Under natural conditions, the diurnal changes of net photosynthetic rate (Pn), transpiration rate (Tr), the relevant physio- logical factors including leaf temperature (TI), stomatal conductance (Gs) and intemal COn concentration (Ci), as well as the relevant physiologi- cal factors including photosynthetic available radiation (PAR), CO2 concentration in field (Ca) and air temperature (Ta) were measured in four al- falfa varieties (Algonguin, WL323 HQ, WL414, and Millionaire). The water use efficiency (WUE) and light use efficiency (LUE) were calculated, and the correlation among them was also analyzed. [Result] The Pn, Tr, PAR and Ta of the four varieties appeared to vary in a single-peak curve; the sequence of WUE was WL323 HQ ~ Algonguin ~ WL414 ~ Millionaire; there was no significant difference in LUE of the four alfalfa varieties; coef- ficient analysis showed that Pn was mainly affected by PAR, Gs, and Ci, while Tr by PAR and Ta. [ Conclusion] WL323 HQ is the variety with high Pn, high WUE and low Tr, and it has strong adaptability to drought. In four alfalfa varieties, PAR, Ta, Gs, and TI are the primary determining fac- tors while Ca and Ci the limiting factors of Tr; Gs is the primary determining factor while Ci the limiting factor of Pn.展开更多
[ Objective] The paper was to study ISSR molecular makers of resistant gene against Sclerotinia trifoliorum in Medicago sativa L. [ Method] Using mi- crosatellite markers (ISSR) molecular maker technology, combined ...[ Objective] The paper was to study ISSR molecular makers of resistant gene against Sclerotinia trifoliorum in Medicago sativa L. [ Method] Using mi- crosatellite markers (ISSR) molecular maker technology, combined with bulked-segregant analysis (BSA) method, the molecular makers for gene linkage with re- sistance against S. trifoliorum were screened from five resistant plants and seven susceptible plants. Leaf in vitro inoculation method was used to carry out resistant verification on 94 hybrid plants in Ft generation of high resistant No. 83 ~ high susceptible No. 4. [ Result] Among 93 ISSR primers, 35 primers could produce clear and stable amplification bands, and six of them could produce 9 specific bands between resistant and susceptible DNA pools. Resistance verification result showed that 825 - 1400, 831 - 1480, 850 - 1800, 858 - 1600, 866 - 1900, 888 - 1400 could be used as ISSR molecular makers of the resistant gene against S. trifoliorum in M. sativa. [Conclusion] The results provided basis for the further research on mapping,, cloning and genetically modified of resistant gene against S. trifoliorum in M. sativa.展开更多
[Objective] The study aimed to explore the influences of Plant growth-promoting rhizobacteria(PGPR)on salt tolerance and physiological effect of seedlings of Medicago sative L.[Method] Three different kinds of growt...[Objective] The study aimed to explore the influences of Plant growth-promoting rhizobacteria(PGPR)on salt tolerance and physiological effect of seedlings of Medicago sative L.[Method] Three different kinds of growth-promoting rhizobacteria solutions were used to spray on M.sative seedlings and the influences of different kinds of growth-promoting rhizobacteria on physiological and biochemical characteristics of M.sative seedlings under 75 mmol/L of Na2CO3 were studied.[Results] Compared with the control group,the chlorophyll,free proline,soluble sugar and soluble protein content of M.sative seedlings treated with different kinds of growth-promoting rhizobacteria were increased,while the effect of CS3 treatment was the best.[Conclusion] The growth-promoting rhizobacteria could promote growth and development of M.sative as well as increased its resistance.展开更多
[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation tech...[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation technology in the practical application.[Method] By the use of pot culture experiment in greenhouse,the phytoremediation effect of alfalfa on TCP-contaminated soil,the growth conditions of alfalfa,as well as the effect of TCP on the activity of soil polyphenol oxidase,dehydrogenase and catalase were studied.[Result] After the alfalfa was grown for 75 d,the TCP content in soil of three different concentrations treatments (low,middle and high) decreased dramatically within 15 d,and then the decreasing rate was gradually slow; on the 30^th d of cultivation,the fresh weight of treated alfalfa showed no significant difference with the control (P〈0.05),indicating that TCP in soil had inhibition effect on the growth of alfalfa; alfalfa could significantly enhance the activities of polyphenol oxidase,dehydrogenase and catalase,thus raising the degradation capability of soil plants and microorganisms on pollutants in soil.[Conclusion] There results indicated that alfalfa could enhance the degradation rate of organics in the contaminated soil and enhance soil enzyme activity,so the alfalfa could be used for the bioremediation of TCP contaminated soil.展开更多
The R2R3-MYB genes make up one of the largest transcription factor families in plants, and play regulatory roles in various biological processes such as development, metabolism and defense response. Although genome-wi...The R2R3-MYB genes make up one of the largest transcription factor families in plants, and play regulatory roles in various biological processes such as development, metabolism and defense response. Although genome-wide analyses of this gene family have been conducted in several species, R2R3-MYB genes have not been systematically analyzed in Medicago truncatula, a sequenced model legume plant. Here, we performed a comprehensive, genome-wide computational analysis of the structural characteristics, phylogeny, functions and expression patterns of M. truncatula R2R3-MYB genes. DNA binding domains are highly conserved among the 155 putative MtR2R3-MYB proteins that we identified. Chromosomal location analysis revealed that these genes were distributed across all eight chromosomes. Results showed that the expansion of the MtR2R3-MYB family was mainly attributable to segmental duplication and tandem duplication. A comprehensive classification was performed based on phylogenetic analysis of the R2R3-MYB gene families in M. truncatula, Arabidopsis thaliana and other plant species. Evolutionary relationships within clades were supported by clade-specific conserved motifs outside the MYB domain. Species-specific clades have been gained or lost during evolution, resulting in functional divergence. Also, tissue-specific expression patterns were investigated. The functions of stress response-related clades were further verified by the changes in transcript levels of representative R2R3-MYB genes upon treatment with abiotic and biotic stresses. This study is the first report on identification and characterization of R2R3-MYB gene family based on the genome of M. truncatula, and will facilitate functional analysis of this gene family in the future.展开更多
Synonymous codon usage pattern presumably reflects gene expression optimization as a result of molecular evolution. Though much attention has been paid to various model organisms ranging from prokaryotes to eukaryotes...Synonymous codon usage pattern presumably reflects gene expression optimization as a result of molecular evolution. Though much attention has been paid to various model organisms ranging from prokaryotes to eukaryotes, codon usage has yet been extensively investigated for model legume Medicago truncatula. In present study, 39 531 available coding sequences (CDSs) from M. truncatula were examined for codon usage bias (CUB). Based on analyses including neutrality plots, effective number of codons plots, and correlations between optimal codons frequency and codon adaptation index, we conclude that natural selection is a major driving force in M. truncatula CUB. We have identified 30 optimal codons encoding 18 amino acids based on relative synonymous codon usage. These optimal codons characteristically end with A or T, except for AGG and TTG encoding arginine and leucine respectively. Optimal codon usage is positively correlated with the GC content at three nucleotide positions of codons and the GC content of CDSs. The abundance of expressed sequence tag is a proxy for gene expression intensity in the legume, but has no relatedness with either CDS length or GC content. Collectively, we unravel the synonymous codon usage pattern in M. truncatula, which may serve as the valuable information on genetic engineering of the model legume and forage crop.展开更多
[Objective] The aim was to study the expression of cold resistant gene CAS19 of Gongnong No.2 Medicago sativa L. in tobacco. [Method] A pair of primers was designed according to nucleotide sequences of cold resistant ...[Objective] The aim was to study the expression of cold resistant gene CAS19 of Gongnong No.2 Medicago sativa L. in tobacco. [Method] A pair of primers was designed according to nucleotide sequences of cold resistant gene CAS19 of M. sativa,and then RT-PCR was used to amplify the protein gene of CAS19,which was then cloned into pMD18-T vector and subcloned into expression vector PBI121. The recombination expression plasmid PBCAS was constructed. And then it was transferred into tobacco genome via Agrobacterium,and Southern-blotting analysis was used for detecting transgenic plants. [Result] CAS19 gene was integrated into the tobacco genome and highly expressed. [Conclusion] This study had provided theoretical basis for further exploring the expression mechanism of cold resistant gene CAS19 in tobacco.展开更多
Iron deficiency is an important environmental factor restricting plant productivity. Selecting tolerant genotypes is one of the possible ways to solve this problem. Many studies reported the effects of Fe deficiency o...Iron deficiency is an important environmental factor restricting plant productivity. Selecting tolerant genotypes is one of the possible ways to solve this problem. Many studies reported the effects of Fe deficiency on photosynthesis and anti-oxidative defense system. Yet, there is little information available on the use of these attributes as selective criteria. In the present study, we aim to determine some physiological and biochemical traits conferring Fe deficiency tolerance at leaf level in two lines of Medicago ciliaris. Our results showed that Fe deprivation had a lowering effect on photosynthesis (chlorophyll, photosynthetic electron transport activity and chlorophyll fluorescence) in both lines studied. However, the sensitive line TN8.7 was more affected. Hydrogen peroxide concentration was negatively correlated with the activities of antioxidant enzymes and with the concentration of some non-enzymatic antioxidant. The tolerant line TN11.11 was characterized by a more efficient antioxidant defense system in comparison with the sensitive line TN8.7. The main conclusion of this study is that photosynthesis and antioxidant defense system could be used as physiological and biochemical indicators of Fe deficiency tolerance in Medicago ciliaris plants.展开更多
Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormo...Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormone.Despite its importance,functions of PSK-αin M.truncatula growth remains unknown.In this study,we identified five genes to encode PSK-αprecursors in M.truncatula.All of these precursors possess conserved PSK-αsignature motif.Expression pattern analysis of these MtPSK genes revealed that each gene was expressed in a tissue-specific or ubiquitous pattern and three of them were remarkably expressed in root.Treatment of M.truncatula seedlings with synthetic PSK-αpeptide significantly promoted root elongation.In addition,expression analysis of downstream genes by RNA-seq and qRT-PCR assays suggested that PSK-αsignaling might regulate cell wall structure via PMEI-PME module to promote root cell growth.Taken together,our results shed light on the mechanism by which PSK-αpromotes root growth in M.truncatula,providing a new resource for improvement of root growth in agriculture.展开更多
基金Supported by Forage Germplasm Resource Protection Project of Ministry of Agriculture,China~~
文摘[Objective] This study aimed to analyze the genetic relationships among Medicago sativa,Medicago falcata and Trigonella foenum-graecum.[Method] ISSR technique was adopted to determine their genetic relationships.[Result] M.sativa,M.falcate and T.foenum-graecum had a broad genetic base.T.foenum-graecum shared closer relationship with M.falcata rather than M.sativa.The study on relationship between M.sativa and T.foenum-graecum was advantageous to identify disputable transition types.But a boundary should be found to identify species to be M.sativa or T.foenum-graecum.[Conclusion] This study will provide reference for identifying some disputable transition types.
基金Supported by the Ministry of Science and Technology of the People’s Republic of China(2006BAD10A19-8)~~
文摘[Objective] The experiment explored of resistance of different Medicago sativa through synthetic variations of all physiological indexes and the correlation analysis between physiological activity and damage degree after thrips damage. [Method] According to studying physiological activity (POD activity, SOD activity, PPO activity, PAL activity, MDA content and free proline content) of alfalfa in alfalfa resistance to different number of thrips, the correlation between physiological activity and resistance was investigated. [Result] It was shown that there were negative correlations among POD, SOD, PPO, PAL, MDA, free praline and the number of thrips, and there were negative correlations among POD, SOD, PPO, PAL, MDA, free praline and CAT. The content changes of POD,SOD,PPO,CAT,MDA and free proline in high resistant alfalfa were slow and PAL was quick and the activities of PPO,PAL,CAT were high, and the activities of POD、SOD were low. [Conclusion] The research provided theoretical basis and materials for identifying resistance varieties of alfalfa to thrip.
文摘pdi gene from Medicago sativa L. ,encoding Protein Disulfide Isomerase( mPDI ), has been cloned and sequenced. According to the mRNA and amino acid sequence, the character of mPDI such as the physical and chemical properties, hydrophilicity/hydrophobicity, signal peptide, secondary structure, coiled coil, transmembrane domains, O-glycogylation site, active site, subcellular localization, functional structural domains and three-dimensional structure were analyzed by a series of bioinformatics software. The results showed that mPDI was a hydrophobic and stable protein with 3 coiled coils, 30-glycogylation sites, 2 structural domains of thioredoxin, 2 active sites of thioredoxin, and located in rough endoplasmic reticulum. It has 512 amino acids, the theoretical pl is 4.98, and signal peptide located in 1-24AA. In the secondary structure, a-helix, random coil, extended chain is 26.37%, 53.32%, 20.31% respectively. The validation of modeling accords with the stereochemistry.
基金Supported by Major State Basic Research Development Program(973 Program) (2007CB407306)National Natural Science Foun-dation of China (50908159)~~
文摘[Objective] The aim was to study the phytoremediation of heavy metal pollution in river sediment by Medicago sativa L.,so as to provide reliable references for the phytoremediation of heavy metal pollution in river sediment.[Method] The air-dried,screened and mixed sediment was put in rectangular PVC box(0.6 m×0.5 m×0.4 m) with seepage vent at the bottom,and the water holding capacity(WHC) of sediment was kept at 30%-60% by deionized water.The seeds of Medicago sativa L.were sown in April 2010,and seedlings were thinned after 7 d.Samples were collected from rhizosphere soil every 30 d,and were used to determine the content of heavy metals,bacteria quantity and enzyme activity in sediment.In addition,the accumulation of heavy metals in the roots,stems and leaves of plant was measured after harvest in October.[Result] Different parts of Medicago sativa L.varied in accumulation capacity to different heavy metals.The accumulation amount of Zn in Medicago sativa L.was the highest,especially in roots.Meanwhile,the accumulation amount of heavy metals like Ni,Cr,Cu and Pb in roots was higher than that of stems and leaves.In contrast,Mn was mainly accumulated in leaves and its amount accounted for 42.47% of the total amount in plant.Besides,the accumulation amount of all heavy metals was the lowest in stems.Ni,Cr,Cu and Pb could be degraded more effectively than Mn,and increasing the planting time and sowing times of crop was beneficial to the degradation of heavy metals.After planted Medicago sativa L.,the quantity of microorganisms in sediment went up obviously,and dehydrogenase activity also showed an increaseing trend.[Conclusion] Medicago sativa L.has certain restoring effect on Zn,Ni,Cr,Cu and Pb,and could be used to restore heavy metal pollution in river sediment.
文摘[ Objective] The paper presents the diumal changes of photosynthesis and transpiration of different alfalfa varieties and their relationship with the associated physiological and ecological factors during branching stage, so as to provide a basis for the development, utilization, and breed- ing of alfalfa. [ Method] Under natural conditions, the diurnal changes of net photosynthetic rate (Pn), transpiration rate (Tr), the relevant physio- logical factors including leaf temperature (TI), stomatal conductance (Gs) and intemal COn concentration (Ci), as well as the relevant physiologi- cal factors including photosynthetic available radiation (PAR), CO2 concentration in field (Ca) and air temperature (Ta) were measured in four al- falfa varieties (Algonguin, WL323 HQ, WL414, and Millionaire). The water use efficiency (WUE) and light use efficiency (LUE) were calculated, and the correlation among them was also analyzed. [Result] The Pn, Tr, PAR and Ta of the four varieties appeared to vary in a single-peak curve; the sequence of WUE was WL323 HQ ~ Algonguin ~ WL414 ~ Millionaire; there was no significant difference in LUE of the four alfalfa varieties; coef- ficient analysis showed that Pn was mainly affected by PAR, Gs, and Ci, while Tr by PAR and Ta. [ Conclusion] WL323 HQ is the variety with high Pn, high WUE and low Tr, and it has strong adaptability to drought. In four alfalfa varieties, PAR, Ta, Gs, and TI are the primary determining fac- tors while Ca and Ci the limiting factors of Tr; Gs is the primary determining factor while Ci the limiting factor of Pn.
基金Support by Research and Demonstration of Seed Breeding Technology of South Alfalfa(2009AB1183)Development of Fine Germplasm Resources of Pasture and New Variety Breeding(2009AA1008)~~
文摘[ Objective] The paper was to study ISSR molecular makers of resistant gene against Sclerotinia trifoliorum in Medicago sativa L. [ Method] Using mi- crosatellite markers (ISSR) molecular maker technology, combined with bulked-segregant analysis (BSA) method, the molecular makers for gene linkage with re- sistance against S. trifoliorum were screened from five resistant plants and seven susceptible plants. Leaf in vitro inoculation method was used to carry out resistant verification on 94 hybrid plants in Ft generation of high resistant No. 83 ~ high susceptible No. 4. [ Result] Among 93 ISSR primers, 35 primers could produce clear and stable amplification bands, and six of them could produce 9 specific bands between resistant and susceptible DNA pools. Resistance verification result showed that 825 - 1400, 831 - 1480, 850 - 1800, 858 - 1600, 866 - 1900, 888 - 1400 could be used as ISSR molecular makers of the resistant gene against S. trifoliorum in M. sativa. [Conclusion] The results provided basis for the further research on mapping,, cloning and genetically modified of resistant gene against S. trifoliorum in M. sativa.
基金Supported by National Natural Science Foundation of China(30970554)~~
文摘[Objective] The study aimed to explore the influences of Plant growth-promoting rhizobacteria(PGPR)on salt tolerance and physiological effect of seedlings of Medicago sative L.[Method] Three different kinds of growth-promoting rhizobacteria solutions were used to spray on M.sative seedlings and the influences of different kinds of growth-promoting rhizobacteria on physiological and biochemical characteristics of M.sative seedlings under 75 mmol/L of Na2CO3 were studied.[Results] Compared with the control group,the chlorophyll,free proline,soluble sugar and soluble protein content of M.sative seedlings treated with different kinds of growth-promoting rhizobacteria were increased,while the effect of CS3 treatment was the best.[Conclusion] The growth-promoting rhizobacteria could promote growth and development of M.sative as well as increased its resistance.
基金Supported by Nanjing Scientific Research Foundation of Nanjing Institute of Technology (Ke 07-30)Foundation for introduced talent of Nanjing Institute of Technology (Ke 2003)~~
文摘[Objective] The research aimed to study the degradation of 2,4,6-trichlorophenol (TCP) in soil planted with alfalfa (Medicago sativa L.),as well as to provide references for the Chlorophenols phytoremediation technology in the practical application.[Method] By the use of pot culture experiment in greenhouse,the phytoremediation effect of alfalfa on TCP-contaminated soil,the growth conditions of alfalfa,as well as the effect of TCP on the activity of soil polyphenol oxidase,dehydrogenase and catalase were studied.[Result] After the alfalfa was grown for 75 d,the TCP content in soil of three different concentrations treatments (low,middle and high) decreased dramatically within 15 d,and then the decreasing rate was gradually slow; on the 30^th d of cultivation,the fresh weight of treated alfalfa showed no significant difference with the control (P〈0.05),indicating that TCP in soil had inhibition effect on the growth of alfalfa; alfalfa could significantly enhance the activities of polyphenol oxidase,dehydrogenase and catalase,thus raising the degradation capability of soil plants and microorganisms on pollutants in soil.[Conclusion] There results indicated that alfalfa could enhance the degradation rate of organics in the contaminated soil and enhance soil enzyme activity,so the alfalfa could be used for the bioremediation of TCP contaminated soil.
基金supported by the National Natural Science Foundation of China(31372362)
文摘The R2R3-MYB genes make up one of the largest transcription factor families in plants, and play regulatory roles in various biological processes such as development, metabolism and defense response. Although genome-wide analyses of this gene family have been conducted in several species, R2R3-MYB genes have not been systematically analyzed in Medicago truncatula, a sequenced model legume plant. Here, we performed a comprehensive, genome-wide computational analysis of the structural characteristics, phylogeny, functions and expression patterns of M. truncatula R2R3-MYB genes. DNA binding domains are highly conserved among the 155 putative MtR2R3-MYB proteins that we identified. Chromosomal location analysis revealed that these genes were distributed across all eight chromosomes. Results showed that the expansion of the MtR2R3-MYB family was mainly attributable to segmental duplication and tandem duplication. A comprehensive classification was performed based on phylogenetic analysis of the R2R3-MYB gene families in M. truncatula, Arabidopsis thaliana and other plant species. Evolutionary relationships within clades were supported by clade-specific conserved motifs outside the MYB domain. Species-specific clades have been gained or lost during evolution, resulting in functional divergence. Also, tissue-specific expression patterns were investigated. The functions of stress response-related clades were further verified by the changes in transcript levels of representative R2R3-MYB genes upon treatment with abiotic and biotic stresses. This study is the first report on identification and characterization of R2R3-MYB gene family based on the genome of M. truncatula, and will facilitate functional analysis of this gene family in the future.
基金supported by the National Basic Research Program of China (2014CB138702)the National Natural Science Foundation of China (31502001)
文摘Synonymous codon usage pattern presumably reflects gene expression optimization as a result of molecular evolution. Though much attention has been paid to various model organisms ranging from prokaryotes to eukaryotes, codon usage has yet been extensively investigated for model legume Medicago truncatula. In present study, 39 531 available coding sequences (CDSs) from M. truncatula were examined for codon usage bias (CUB). Based on analyses including neutrality plots, effective number of codons plots, and correlations between optimal codons frequency and codon adaptation index, we conclude that natural selection is a major driving force in M. truncatula CUB. We have identified 30 optimal codons encoding 18 amino acids based on relative synonymous codon usage. These optimal codons characteristically end with A or T, except for AGG and TTG encoding arginine and leucine respectively. Optimal codon usage is positively correlated with the GC content at three nucleotide positions of codons and the GC content of CDSs. The abundance of expressed sequence tag is a proxy for gene expression intensity in the legume, but has no relatedness with either CDS length or GC content. Collectively, we unravel the synonymous codon usage pattern in M. truncatula, which may serve as the valuable information on genetic engineering of the model legume and forage crop.
基金Supported by National High Technology Research and Development Program of China(2008AA10Z224)National Natural Science Foundation of China (30471229)~~
文摘[Objective] The aim was to study the expression of cold resistant gene CAS19 of Gongnong No.2 Medicago sativa L. in tobacco. [Method] A pair of primers was designed according to nucleotide sequences of cold resistant gene CAS19 of M. sativa,and then RT-PCR was used to amplify the protein gene of CAS19,which was then cloned into pMD18-T vector and subcloned into expression vector PBI121. The recombination expression plasmid PBCAS was constructed. And then it was transferred into tobacco genome via Agrobacterium,and Southern-blotting analysis was used for detecting transgenic plants. [Result] CAS19 gene was integrated into the tobacco genome and highly expressed. [Conclusion] This study had provided theoretical basis for further exploring the expression mechanism of cold resistant gene CAS19 in tobacco.
文摘Iron deficiency is an important environmental factor restricting plant productivity. Selecting tolerant genotypes is one of the possible ways to solve this problem. Many studies reported the effects of Fe deficiency on photosynthesis and anti-oxidative defense system. Yet, there is little information available on the use of these attributes as selective criteria. In the present study, we aim to determine some physiological and biochemical traits conferring Fe deficiency tolerance at leaf level in two lines of Medicago ciliaris. Our results showed that Fe deprivation had a lowering effect on photosynthesis (chlorophyll, photosynthetic electron transport activity and chlorophyll fluorescence) in both lines studied. However, the sensitive line TN8.7 was more affected. Hydrogen peroxide concentration was negatively correlated with the activities of antioxidant enzymes and with the concentration of some non-enzymatic antioxidant. The tolerant line TN11.11 was characterized by a more efficient antioxidant defense system in comparison with the sensitive line TN8.7. The main conclusion of this study is that photosynthesis and antioxidant defense system could be used as physiological and biochemical indicators of Fe deficiency tolerance in Medicago ciliaris plants.
基金This work is supported by the National Natural Science Foundation of China(31500197).
文摘Phytosulfokine-α(PSK-α),a sulfated pentapeptide with the sequence YIYTQ,is encoded by a small precursor gene family in Arabidopsis.PSK-αregulates multiple growth and developmental processes as a novel peptide hormone.Despite its importance,functions of PSK-αin M.truncatula growth remains unknown.In this study,we identified five genes to encode PSK-αprecursors in M.truncatula.All of these precursors possess conserved PSK-αsignature motif.Expression pattern analysis of these MtPSK genes revealed that each gene was expressed in a tissue-specific or ubiquitous pattern and three of them were remarkably expressed in root.Treatment of M.truncatula seedlings with synthetic PSK-αpeptide significantly promoted root elongation.In addition,expression analysis of downstream genes by RNA-seq and qRT-PCR assays suggested that PSK-αsignaling might regulate cell wall structure via PMEI-PME module to promote root cell growth.Taken together,our results shed light on the mechanism by which PSK-αpromotes root growth in M.truncatula,providing a new resource for improvement of root growth in agriculture.