[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [...[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.展开更多
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s...Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.展开更多
Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In thi...Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In this study,the effect of alternating magnetic field(intensity,frequency)on the yield stress of a waxy model oil with nanocomposite pour point depressant(NPPD)is systematically investigated.An optimum magnetic field intensity and frequency is found for the reduction in yield stress.When adding with NPPD,the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy model oil.Interestingly,the magnetic field is helpful for the modification of yield stress at a lower frequency and intensity before the optimal value;however,the modification is found to be weakened when the magnetic field is further increased after the optimal value.Possible explanation is proposed that the aggregation morphology of wax crystal would be altered and results in the release of wrapped oil phase from the network structure under the magnetic field.展开更多
It is an important way for realizing sustainable development of sweet corn production to stabilize and improve soil fertility of cultivated land in sweet corn production region.Through the test of sweet corn straw dir...It is an important way for realizing sustainable development of sweet corn production to stabilize and improve soil fertility of cultivated land in sweet corn production region.Through the test of sweet corn straw directly returning to the field after 6seasons for 3years,the results showed that continuous single application of chemical fertilizer is not conducive to the stability of soil fertility and yield improvement,and implementation of straw returning could receive fertility,improve soil acidic conditions,and enhance the yield of sweet corn.Compared with before the test,the single application of chemical fertilizer increased soil available phosphorus,while the contents of soil organic matter,available nitrogen and available potassium decreased by 1.08,1.18 and 2.47mg/kg respectively,and the soil pH decreased by 0.15.Under the same fertilizer conditions,organic matter contents of single and double-season straw returning increased by 0.71 and 1.29g/kg,available nitrogen increased by 17.15 and 28.27mg/kg,available phosphorus increased by 0.96 and 1.73mg/kg,available potassium increased by 2.41 and 5.92mg/kg,the soil pH increased by 0.16 and 0.2.Compared with the single application of chemical fertilizer,the average yields of single and double-season straw returning increased by 7.5%and 11.8%,and their average income increased by 87.3and 117.1yuan of per mu(667m^2)respectively.展开更多
The effects of amount of green manure returned to field on yield and quality of flue-cured tobacco were studied by field experiment. The results showed that significant positive correlation existed between tobacco lea...The effects of amount of green manure returned to field on yield and quality of flue-cured tobacco were studied by field experiment. The results showed that significant positive correlation existed between tobacco leaf yield and small or moderate amount of green manure returned to field. Path analysis showed that moderate amount of green manure returned to field affected yield and quality of tobacco leaves, small green manure returned to field mainly affected leaf yield, while large amount of green manure returned to field mainly affected leaf quality. Therefore, the effect of moderate amount of green manure returned to field on yield and quality of tobacco leaves was best, and moderate amount of green manure returned to field was recommended in production of flue-cured tobacco.展开更多
From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city...From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city,Hunan Province.The results showed that the dry matter accumulation,effective panicle,yield and partial productivity of nitrogen fertilizer in the stem,leaf,panicle and aboveground parts of early and late rice treated with winter planting milk vetch and straw returning were signi ficantly higher than those treated with straw returning only.Among them,the effective panicles of early and late rice increased by 2.58%,3.18%(2017)and 5.22%,6.32%(2018),respectively.Yield increased by 11.85%,10.07%(2017)and 12.42%,10.92%(2018),annual partial productivity of nitrogen fertilizer increased by 10.90%(2017)and 11.66%(2018),respectively.In conclusion,winter planting milk vetch under straw returning is beneficial to increase dry matter accumulation,rice yield and partial productivity of nitrogen fertilizer in mechanized double cropping rice.展开更多
Weed management in summer season foxtall millet field was studied by evaluating weed damage and exploring competition between weeds and foxtail millet, and a few fitting models were simulated and compared by employing...Weed management in summer season foxtall millet field was studied by evaluating weed damage and exploring competition between weeds and foxtail millet, and a few fitting models were simulated and compared by employing field plot experiment and nonlinear regression analysis. The results showed that the millet yield losses and weed density were extremely significantly correlated. Among the tested models, the determination coefficient ( R2 ) of hyperbolic model was 0.997 12, and minimum residual sum of squares was 16.174, which was considered the optimal model to simulate the competition relation between weeds and millet. The predicted equation was Y = d/( 1. 733 + 0. 018d) ; the interspecific competitiveness of weeds was 0. 577 0 and the intraspecific competitiveness was 0.010 3 ; the maximum loss rate of millet yield was 55.56%. This study had established an analysis model with high gcodness-of-fit and practical prediction which could help weed management in summer season millet field.展开更多
The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the me...The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.展开更多
[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With c...[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.展开更多
Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,s...Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,soil management,and soil nutrients concerning various types of low-yielding fields in the county. In accordance with the dominant soil constraint factors and main direction of improvement,the lowyielding fields in the county are divided into four types: irrigation improvement type,waterlogging drainage type,barren soil fertilization and barrier layer type. Finally this paper offers specific guidance on the construction of arable land.展开更多
文摘[Objective] This paper aimed to understand the area change and distribu- tion of medium-low yield farmland, and offered basis to the improvement of mediumlow farmland and its increase of grain production in Tianjin. [Method] Based on the statistical date of Tianjin and its relevant counties and districts, the yield standard was set up to classify high-yield, medium-yield and low-yield farmland in Tianjin. The author analyzed area change of medium-low yield farmland in six agricultural counties and districts (including Jixian County, Wuqing District, Baodi District, Ninghe County, Jinghai County and Dagang district of Binghai New Area) from 1980 to 2010. [Result] The results showed that the average yield of grain rose from 2 445 kg/hm^2 in 1980 to 5 130 kg/hm^2 in 2010, increasing 109.82%. The area of mediumlow yield farmland was reduced from 291 250.13 hm^2 in 1985 to 76 489.87 hm^2 in 2010, coming down 74%. In Tianjin, the area of medium-low yield farmland of 2010 accounted for 19% of the total farmland, of which the ratios of medium-low yield farmland of Jinghai County, Jixian County, Dagang district of Binghai New Area, Wuqing District, Baodi District and Ninghe County were 43.12%, 18.59%, 17.23%, 14.01%, 7.05% and 0, respectively. Low soil nutrient content, drought and water shortage, as well as soil salinization were the main yield limiting factors to mediumlow yield farmland in Tianjin in 2010. [Conclusion] The countermeasures to improve the medium-low yield farmland were proposed, involving enhancing the investment of the government, strengthening the construction of water conservancy infrastructure, further improving the soil fertility, as well as saline and alkaline land, optimizing the farming system and planting drought and salt tolerance crops, etc.
基金financially supported by the the National Key Research and Development Program of China(2016YFD0300104)the Heilongjiang Bayi Agricultural University Program for Young Scholars with Creative Talents,China(CXRC2017001)+1 种基金the Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong,China(TDJH201802)the Graduate Innovative Research Projects,China(YJSCX2019-Y104)。
文摘Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.
基金the National Natural Science Foundation of China(51774303,51422406,51534007)the National Science&Technology Specific Project(2016ZX05028-004-001)+1 种基金111 Project(B18054)Science Foundation of China University of Petroleum,Beijing(C201602)for providing support for this work
文摘Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In this study,the effect of alternating magnetic field(intensity,frequency)on the yield stress of a waxy model oil with nanocomposite pour point depressant(NPPD)is systematically investigated.An optimum magnetic field intensity and frequency is found for the reduction in yield stress.When adding with NPPD,the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy model oil.Interestingly,the magnetic field is helpful for the modification of yield stress at a lower frequency and intensity before the optimal value;however,the modification is found to be weakened when the magnetic field is further increased after the optimal value.Possible explanation is proposed that the aggregation morphology of wax crystal would be altered and results in the release of wrapped oil phase from the network structure under the magnetic field.
基金Supported by Huizhou Science and Technology Support Item(2011B040010010)
文摘It is an important way for realizing sustainable development of sweet corn production to stabilize and improve soil fertility of cultivated land in sweet corn production region.Through the test of sweet corn straw directly returning to the field after 6seasons for 3years,the results showed that continuous single application of chemical fertilizer is not conducive to the stability of soil fertility and yield improvement,and implementation of straw returning could receive fertility,improve soil acidic conditions,and enhance the yield of sweet corn.Compared with before the test,the single application of chemical fertilizer increased soil available phosphorus,while the contents of soil organic matter,available nitrogen and available potassium decreased by 1.08,1.18 and 2.47mg/kg respectively,and the soil pH decreased by 0.15.Under the same fertilizer conditions,organic matter contents of single and double-season straw returning increased by 0.71 and 1.29g/kg,available nitrogen increased by 17.15 and 28.27mg/kg,available phosphorus increased by 0.96 and 1.73mg/kg,available potassium increased by 2.41 and 5.92mg/kg,the soil pH increased by 0.16 and 0.2.Compared with the single application of chemical fertilizer,the average yields of single and double-season straw returning increased by 7.5%and 11.8%,and their average income increased by 87.3and 117.1yuan of per mu(667m^2)respectively.
基金Supported by Project of Hunan Tobacco Monopoly Bureau
文摘The effects of amount of green manure returned to field on yield and quality of flue-cured tobacco were studied by field experiment. The results showed that significant positive correlation existed between tobacco leaf yield and small or moderate amount of green manure returned to field. Path analysis showed that moderate amount of green manure returned to field affected yield and quality of tobacco leaves, small green manure returned to field mainly affected leaf yield, while large amount of green manure returned to field mainly affected leaf quality. Therefore, the effect of moderate amount of green manure returned to field on yield and quality of tobacco leaves was best, and moderate amount of green manure returned to field was recommended in production of flue-cured tobacco.
文摘From 2017 to 2018,the effects of winter planting of milk vetch on yield and partial productivity of nitrogen fertilizer of machine-transplanted double-cropping rice under straw returning were studied in Ningxiang city,Hunan Province.The results showed that the dry matter accumulation,effective panicle,yield and partial productivity of nitrogen fertilizer in the stem,leaf,panicle and aboveground parts of early and late rice treated with winter planting milk vetch and straw returning were signi ficantly higher than those treated with straw returning only.Among them,the effective panicles of early and late rice increased by 2.58%,3.18%(2017)and 5.22%,6.32%(2018),respectively.Yield increased by 11.85%,10.07%(2017)and 12.42%,10.92%(2018),annual partial productivity of nitrogen fertilizer increased by 10.90%(2017)and 11.66%(2018),respectively.In conclusion,winter planting milk vetch under straw returning is beneficial to increase dry matter accumulation,rice yield and partial productivity of nitrogen fertilizer in mechanized double cropping rice.
基金Supported by Science and Technology Support Program of Hebei Province(09250307D)Special Fund for Agro-scientific Research in the Public Interest (20120304201)
文摘Weed management in summer season foxtall millet field was studied by evaluating weed damage and exploring competition between weeds and foxtail millet, and a few fitting models were simulated and compared by employing field plot experiment and nonlinear regression analysis. The results showed that the millet yield losses and weed density were extremely significantly correlated. Among the tested models, the determination coefficient ( R2 ) of hyperbolic model was 0.997 12, and minimum residual sum of squares was 16.174, which was considered the optimal model to simulate the competition relation between weeds and millet. The predicted equation was Y = d/( 1. 733 + 0. 018d) ; the interspecific competitiveness of weeds was 0. 577 0 and the intraspecific competitiveness was 0.010 3 ; the maximum loss rate of millet yield was 55.56%. This study had established an analysis model with high gcodness-of-fit and practical prediction which could help weed management in summer season millet field.
基金Nature Science Fund Project in Heilongjiang Province (C2004-10)
文摘The drought in spring leads to the lack of soil water, which influents sprout and bud of crops, which furthermore affects growth and yield of crops. Studying the technology integration of bed-irrigating sowing, the mending irrigation of seedling stage and the effect of water-saving of ridge plotted field, analyzing the finger of yield and dry matter accumulation, water-saving technology integration have good effects on water-saving, water storage and increasing moisture on soil and enhancement of soybean yield.
文摘[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.
基金Supported by National Soil Testing and Fertilizer Recommendation Project
文摘Using the evaluation indicator system for arable land fertility in Suiping County,this paper analyzes some factors influencing agricultural production,such as physical and chemical properties of soil,site conditions,soil management,and soil nutrients concerning various types of low-yielding fields in the county. In accordance with the dominant soil constraint factors and main direction of improvement,the lowyielding fields in the county are divided into four types: irrigation improvement type,waterlogging drainage type,barren soil fertilization and barrier layer type. Finally this paper offers specific guidance on the construction of arable land.