AIM: To explore whether ectopic expression of human melanopsin can effectively and safely restore visual function in rd1 mice.· METHODS: Hematoxylin-eosin staining of retinal sections from rd1 mice was used to ...AIM: To explore whether ectopic expression of human melanopsin can effectively and safely restore visual function in rd1 mice.· METHODS: Hematoxylin-eosin staining of retinal sections from rd1 mice was used to detect the thickness of the outer nuclear layer to determine the timing of surgery. We constructed a human melanopsinAAV2/8 viral vector and injected it into the subretinal space of rd1 mice. The Phoenix Micron IV system was used to exclude the aborted injections, and immunohistochemistry was used to validate the ectopic expression of human melanopsin. Furthermore, visual electrophysiology and behavioral tests were used to detect visual function 30 and 45 d after the injection. The structure of the retina was compared between the human melanopsin-injected group and phosphate buffer saline(PBS)-injected group.·RESULTS: Retinas of rd1 mice lost almost all of their photoreceptors on postnatal day 28(P28). We therefore injected the human melanopsin-adeno-associated virus(AAV) 2/8 viral vector into P30 rd1 mice. After excluding aborted injections, we used immunohistochemistry of the whole mount retina to confirm the ectopic expression of human melanopsin by co-expression of human melanopsin and YFP that was carried by a viral vector. At30 d post-injection, visual electrophysiology and the behavioral test significantly improved. However,restoration of vision disappeared 45 d after human melanopsin injection. Notably, human melanopsin-injected mice did not show any structural differences in their retinas compared with PBS-injected mice.·CONCLUSION: Ectopic expression of human melanopsin effectively and safely restores visual function in rd1展开更多
Background Glaucoma can cause progressive damage to retinal ganglion cells. These cells can be classified as cells projecting to the superior colliculus and melanopsin-containing retinal ganglion cells, which project ...Background Glaucoma can cause progressive damage to retinal ganglion cells. These cells can be classified as cells projecting to the superior colliculus and melanopsin-containing retinal ganglion cells, which project to the suprachiasmatic nucleus. This study was to investigate the effects of chronic intraocular pressure elevation on melanopsin-containing retinal ganglion cells in rats. Methods Chronic intraocular pressure elevation was induced in one eye of adult Wistar rats by cauterization of three episcleral veins. Intraocular pressure was measured at different intervals with a rebound tonometer. Superior collicular retinal ganglion cells were retrogradely labeled from the superior colliculus with Fluorogold. Melanopsin-containing retinal ganglion cells were visualized by free-floating immunohistochemistry on whole-mount retinas. The number of labeled superior collicular and melanopsin-containing retinal ganglion cells were counted in the sample areas on flat-mounted retinas. Results Compared with contralateral control eyes, the numbers of both superior collicular and melanopsin-containing retinal ganglion cells were significantly reduced after 12 weeks of experimental intraocular pressure elevation ((2317.41±29.96)/mm^2 vs (1815.82±24.25)/mm^2; (26.20±2.10)/mm^2 vs (20.62±1.52)/mm^2, respectively). The extent of cell loss of the two types of retinal ganglion cells was similar. However, no morphologic changes were found in melanopsin-containing retinal ganglion cells. Conclusion Both melanopsin-containing and superior collicular retinal ganglion cells were damaged by chronic ocular hypertension, indicating that glaucomatous neural degeneration involves the non-image-forming visual pathway.展开更多
国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在...国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在光敏视网膜神经节细胞(ipRGCs)对人类产生非视觉效应。CIE最近还发布了一个开放获取的α响应工具箱,基于测量(用户自定义)的光谱或工具箱中内置的标准照明体(A、D65、E、FL11、LED-B3),计算光度量、辐射度量和光子系统中α响应计量的数量和比率。基于视黑素蛋白的ipRGCs光感受已被广泛证明可以解释非视觉响应的光谱敏感性,包括改变夜间睡眠的时间、褪黑素分泌和调节稳态瞳孔直径。最近的研究结果表明,感光色素视黑素蛋白也在视觉响应中发挥作用,并且基于视黑素蛋白的光感受可能对亮度感知和空间视觉方面有重要影响。虽然在非视觉效应方面,关于视杆细胞、视锥细胞与ipRGCs如何交互的认识不断发展,最近CIE的一份关于应用“在合适的时间推荐合适的光照”的立场声明中使用了视黑素响应日光(D65)等效照度来指导调节非视觉响应。关于这种方法的详细说明,可以通过第二届昼夜节律和神经生理光度学国际研讨会(曼彻斯特,2019年8月)的同行评审出版物了解*。CIE S 026新的α响应计量方法实现了可追踪测量,并对个人光照量、光干预和照明设计进行了正式的量化规范。通过使用这个工具箱,将这种计量方法应用于日常光源,包括动态变化的日光、LED照明光源以及智能手机屏幕等。这些示例展示了如何利用视黑素含量随时间变化的光照,以更好地支持人类健康与福祉。展开更多
基金Supported by the Chongqing Internationa Cooperation Key Projects(No.CSTC2013GJHZ10004)National Basic Research Program of China(973 Program No.2013CB967002)
文摘AIM: To explore whether ectopic expression of human melanopsin can effectively and safely restore visual function in rd1 mice.· METHODS: Hematoxylin-eosin staining of retinal sections from rd1 mice was used to detect the thickness of the outer nuclear layer to determine the timing of surgery. We constructed a human melanopsinAAV2/8 viral vector and injected it into the subretinal space of rd1 mice. The Phoenix Micron IV system was used to exclude the aborted injections, and immunohistochemistry was used to validate the ectopic expression of human melanopsin. Furthermore, visual electrophysiology and behavioral tests were used to detect visual function 30 and 45 d after the injection. The structure of the retina was compared between the human melanopsin-injected group and phosphate buffer saline(PBS)-injected group.·RESULTS: Retinas of rd1 mice lost almost all of their photoreceptors on postnatal day 28(P28). We therefore injected the human melanopsin-adeno-associated virus(AAV) 2/8 viral vector into P30 rd1 mice. After excluding aborted injections, we used immunohistochemistry of the whole mount retina to confirm the ectopic expression of human melanopsin by co-expression of human melanopsin and YFP that was carried by a viral vector. At30 d post-injection, visual electrophysiology and the behavioral test significantly improved. However,restoration of vision disappeared 45 d after human melanopsin injection. Notably, human melanopsin-injected mice did not show any structural differences in their retinas compared with PBS-injected mice.·CONCLUSION: Ectopic expression of human melanopsin effectively and safely restores visual function in rd1
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30571991).
文摘Background Glaucoma can cause progressive damage to retinal ganglion cells. These cells can be classified as cells projecting to the superior colliculus and melanopsin-containing retinal ganglion cells, which project to the suprachiasmatic nucleus. This study was to investigate the effects of chronic intraocular pressure elevation on melanopsin-containing retinal ganglion cells in rats. Methods Chronic intraocular pressure elevation was induced in one eye of adult Wistar rats by cauterization of three episcleral veins. Intraocular pressure was measured at different intervals with a rebound tonometer. Superior collicular retinal ganglion cells were retrogradely labeled from the superior colliculus with Fluorogold. Melanopsin-containing retinal ganglion cells were visualized by free-floating immunohistochemistry on whole-mount retinas. The number of labeled superior collicular and melanopsin-containing retinal ganglion cells were counted in the sample areas on flat-mounted retinas. Results Compared with contralateral control eyes, the numbers of both superior collicular and melanopsin-containing retinal ganglion cells were significantly reduced after 12 weeks of experimental intraocular pressure elevation ((2317.41±29.96)/mm^2 vs (1815.82±24.25)/mm^2; (26.20±2.10)/mm^2 vs (20.62±1.52)/mm^2, respectively). The extent of cell loss of the two types of retinal ganglion cells was similar. However, no morphologic changes were found in melanopsin-containing retinal ganglion cells. Conclusion Both melanopsin-containing and superior collicular retinal ganglion cells were damaged by chronic ocular hypertension, indicating that glaucomatous neural degeneration involves the non-image-forming visual pathway.
文摘国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在光敏视网膜神经节细胞(ipRGCs)对人类产生非视觉效应。CIE最近还发布了一个开放获取的α响应工具箱,基于测量(用户自定义)的光谱或工具箱中内置的标准照明体(A、D65、E、FL11、LED-B3),计算光度量、辐射度量和光子系统中α响应计量的数量和比率。基于视黑素蛋白的ipRGCs光感受已被广泛证明可以解释非视觉响应的光谱敏感性,包括改变夜间睡眠的时间、褪黑素分泌和调节稳态瞳孔直径。最近的研究结果表明,感光色素视黑素蛋白也在视觉响应中发挥作用,并且基于视黑素蛋白的光感受可能对亮度感知和空间视觉方面有重要影响。虽然在非视觉效应方面,关于视杆细胞、视锥细胞与ipRGCs如何交互的认识不断发展,最近CIE的一份关于应用“在合适的时间推荐合适的光照”的立场声明中使用了视黑素响应日光(D65)等效照度来指导调节非视觉响应。关于这种方法的详细说明,可以通过第二届昼夜节律和神经生理光度学国际研讨会(曼彻斯特,2019年8月)的同行评审出版物了解*。CIE S 026新的α响应计量方法实现了可追踪测量,并对个人光照量、光干预和照明设计进行了正式的量化规范。通过使用这个工具箱,将这种计量方法应用于日常光源,包括动态变化的日光、LED照明光源以及智能手机屏幕等。这些示例展示了如何利用视黑素含量随时间变化的光照,以更好地支持人类健康与福祉。