期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti_(3)C_(2)T_(x)MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs
1
作者 Yihui Li Juan Xie +10 位作者 Ruofei Wang Shugang Min Zewen Xu Yangjian Ding Pengcheng Su Xingmin Zhang Liyu Wei Jing‑Feng Li Zhaoqiang Chu Jingyu Sun Cheng Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期394-414,共21页
Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion... Black phosphorus with a superior theoretical capacity(2596 mAh g^(-1))and high conductivity is regarded as one of the powerful candidates for lithium-ion battery(LIB)anode materials,whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs.By contrast,the exfoliated two-dimensional phosphorene owns negligible volume variation,and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics,while its positive influence has not been discussed yet.Herein,a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage.The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions,but also endow the nanocomposite with favorable piezoelectricity,thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator.By waltzing with the MXene framework,the optimized electrode exhibits enhanced kinetics and stability,achieving stable cycling performances for 1,000 cycles at 2 A g^(-1),and delivering a high reversible capacity of 524 m Ah g^(-1)at-20℃,indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics. 展开更多
关键词 Phosphorene Nanopiezocomposite Piezo-electrochemical coupling membrane electrode assembly Lithium-ion storage
下载PDF
Designing Membrane Electrode Assembly for Electrochemical CO_(2)Reduction:a Review
2
作者 Xuerong Wang Shulin Zhao +4 位作者 Tao Guo Luyao Yang Qianqian Zhao Yuping Wu Yuhui Chen 《Transactions of Tianjin University》 EI CAS 2024年第2期117-129,共13页
Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in explo... Currently, the electrochemical CO_(2) reduction reaction (CO_(2) RR) can realize the resource conversion of CO_(2) , which is a promising approach to carbon resource use. Important advancements have been made in exploring the CO_(2) RR performance and mechanism because of the rational design of electrolyzer systems, such as H-cells, flow cells, and catalysts. Considering the future development direction of this technology and large-scale application needs, membrane electrode assembly (MEA) systems can improve energy use efficiency and achieve large-scale CO_(2) conversion, which is considered the most promising technology for industrial applications. This review will concentrate on the research progress and present situation of the MEA component structure. This paper begins with the composition and construction of a gas diff usion electrode. Then, the application of ion-exchange membranes in MEA is introduced. Furthermore, the eff ects of pH and the anion and cation of the anolyte on MEA performance are explored. Additionally, we present the anode reaction type in MEA. Finally, the challenges in this field are summarized, and upcoming trends are projected. This review should offer researchers a clearer picture of MEA systems and provide important, timely, and valuable insights into rational electrolyzer design to facilitate further development of CO_(2) electrochemical reduction. 展开更多
关键词 CO_(2)reduction ELECTROCATALYSIS membrane electrode assembly
下载PDF
Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells 被引量:2
3
作者 Zhongxin Song Junjie Li +4 位作者 Qianling Zhang Yongliang Li Xiangzhong Ren Lei Zhang Xueliang Sun 《Carbon Energy》 SCIE CSCD 2023年第7期38-56,共19页
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel... A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future. 展开更多
关键词 fuel cells membrane electrode assembly oxygen reduction reaction reaction mechanism single-atom catalysts
下载PDF
SPE Membrane Electrode and Its Application to Chemical Sensor 被引量:2
4
作者 陈霭璠 陈亮媛 +2 位作者 崔梅生 罗瑞贤 ChungchiunLIU 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期186-189,共4页
The structure and proton conducting mechanism of solid polymer electrolyte (SPE) are described. Since the conductivity of electrolyte is important in SPE electrochemical cell research and development, we investigate q... The structure and proton conducting mechanism of solid polymer electrolyte (SPE) are described. Since the conductivity of electrolyte is important in SPE electrochemical cell research and development, we investigate quantitatively the conductivity of Nafion membrane and its dependence on temperature and relative humidity. Experimental results show that the conductivity of Nafion membrane increases with temperature and relative humidity. We also reports on the preparation and development of SPE membrane electrode with the emphasis on the mixture pressing method and impregnation-reduction process to prepare SPE composite electrode assemblies and their application to electrochemical sensors. We also investigate and fabricate a potentiometric electrochemical sensor of hydrogen and ethylene to measure the hydrogen and ethylene partial pressure. 展开更多
关键词 solid polymer electrolyte composite membrane electrode hydrogen and ethylene sensors
下载PDF
Preparation and Optimization of Porous Membrane Electrodes via Gradient Coating in Hydrogen Fuel Cell 被引量:2
5
作者 Gu Xianrui Wu Yuchao +1 位作者 Wang Houpeng Rong Junfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第3期1-8,共8页
Fuel cells are considered to be one of the ideal alternatives to traditional fossil energy conversion devices.Membrane electrodes are the core components in the hydrogen fuel cells.Our work reported the synthesis of t... Fuel cells are considered to be one of the ideal alternatives to traditional fossil energy conversion devices.Membrane electrodes are the core components in the hydrogen fuel cells.Our work reported the synthesis of the Pt/C catalysts with different Pt loading,and by changing the Nafion content,hot pressing temperature and hot pressing pressure,the catalyst coated membrane(CCM)spraying process was optimized.Moreover,the three-dimensional structure model of the single battery membrane electrode was studied quantitatively,and the porous membrane electrode with gradient distribution was fabricated under optimized processing conditions,with excellent electrical performance. 展开更多
关键词 hydrogen fuel cell membrane electrode Pt/C catalyst polarization curve power density single cell test
下载PDF
A Novel Tetraiodocadmate(Ⅱ) - PVC Membrane Electrode for the Potentiometric Determination of Cadmium(Ⅱ)
6
作者 Fu Chang WANG Ya Qin CHAI Ruo YUAN 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第7期941-944,共4页
A novel tetraiodocadmate(Ⅱ)-selective membrane electrode consisting of tetraiodo-cadmate(Ⅱ)-rhodamin B ion pair (TICRhB) dispersed in a PVC matrix plasticized with 2-nitrophenyl octyl ether (o-NPOE) was prep... A novel tetraiodocadmate(Ⅱ)-selective membrane electrode consisting of tetraiodo-cadmate(Ⅱ)-rhodamin B ion pair (TICRhB) dispersed in a PVC matrix plasticized with 2-nitrophenyl octyl ether (o-NPOE) was prepared. The sensor demonstrated a near-Nernstian response for 1×10^-2 to 2×10^-6 mol/L cadmium (Ⅱ) at 25℃ with an anionic slope of 29.0. It revealed very good selectivity for Cd^2+ with negligible interference from many cations and anions, and could be used in a pH range of 3 to 6. 展开更多
关键词 Tetraiodocadmate(Ⅱ) ion pair membrane electrode.
下载PDF
Recent advances in Pt catalysts and membrane electrode assemblies fabrication for proton exchange membrane fuel cells
7
作者 Miao Ma Li-Xiao Shen +4 位作者 Jing Liu Bin Xu Yun-Long Zhang Lei Zhao Zhen-Bo Wang 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4198-4221,共24页
Proton exchange membrane fuel cells(PEMFCs)have been identified as a highly promising means of achieving sustainable energy conversion.A crucial factor in enhancing the performance of PEMFCs for further potential ener... Proton exchange membrane fuel cells(PEMFCs)have been identified as a highly promising means of achieving sustainable energy conversion.A crucial factor in enhancing the performance of PEMFCs for further potential energy applications is the advancement in the field of catalyst engineering that has led to remarkable performance enhancement in facilitating the oxygen reduction reaction(ORR).Subsequently,it is important to acknowledge that the techniques used in preparation of membrane electrode assemblies(MEAs),the vital constituents of PEMFCs,also possess direct and critical influence on exhibiting the full catalytic activity of meticulously crafted catalysts.Here,a succinct summary of the most recent advancements in Pt catalysts for ORR was offered and their underly catalytic mechanism were discussed.Then,both laboratory-scale and industrial-scale MEA fabrication techniques of Pt catalysts were summarized.Furthermore,a detailed analysis of the connections between materials,process,and performance in MEA fabrication was presented in order to facilitate the development of optimal catalyst layers. 展开更多
关键词 Pt catalysts Oxygen reduction reaction membrane electrode assemblies MEA fabrication techniques
原文传递
Surface promotion of copper nanoparticles with alumina clusters derived from layered double hydroxide accelerates CO_(2)reduction to ethylene in membrane electrode assemblies 被引量:3
8
作者 Jie Zhang Xinnan Mao +6 位作者 Binbin Pan Jie Xu Xue Ding Na Han Lu Wang Yuhang Wang Yanguang Li 《Nano Research》 SCIE EI CSCD 2023年第4期4685-4690,共6页
Electrochemical CO_(2)reduction has the vast potential to neutralize CO_(2)emission and valorizes this greenhouse gas into chemicals and fuels under mild conditions.Its commercial realization hinges on catalyst innova... Electrochemical CO_(2)reduction has the vast potential to neutralize CO_(2)emission and valorizes this greenhouse gas into chemicals and fuels under mild conditions.Its commercial realization hinges on catalyst innovation as well as device engineering for enabling reactions at industrially relevant conditions.Copper has been widely examined for the selective production of multicarbon chemicals particularly ethylene,while there is still a substantial gap between the expected and the attainable.In this work,we report that the surface promotion of copper with alumina clusters is a viable strategy to enhance its electrocatalytic performance.AlOx-promoted Cu catalyst is derived from Cu-Al layered double hydroxide nanosheets after alkali etching and cathodic conversion.It can catalyze CO_(2)to ethylene and multicarbon products with great selectivity and stability far superior to pristine copper in both an H-cell and a zero-gap membrane electrode assembly(MEA)electrolyzer.The surface promotion effect is understood via computational simulations showing that alumina clusters can stabilize key reaction intermediates(*COOH and*OCCOH)along the reaction pathway. 展开更多
关键词 electrochemical CO_(2)reduction surface promotion layered double hydroxide ETHYLENE membrane electrode assembly
原文传递
Probing the Efficiency of PPMG-Based Composite Electrolytes for Applications of Proton Exchange Membrane Fuel Cell
9
作者 Shakeel Ahmed Faizah Altaf +6 位作者 Safyan Akram Khan Sumaira Manzoor Aziz Ahmad Muhammad Mansha Shahid Ali Ata-ur-Rehman Karl Jacob 《Transactions of Tianjin University》 EI CAS 2024年第3期262-283,共22页
PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em... PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell. 展开更多
关键词 Proton exchange membrane fuel cell Sulfonated graphene oxide POLYVINYLPYRROLIDONE Solution casting membrane electrode assembly Fuel cell performance
下载PDF
An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode 被引量:4
10
作者 En-Dong Xing Long-Qi Liang +1 位作者 Yu-Jie Dong Wei-Min Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1322-1326,共5页
The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by ... The development of a simple, efficient and sensitive sensor for dissolved oxygen is proposed using a novel type of porous carbon composite membrane/glassy carbon electrode based on the low-cost common filter paper by a simple method. The resulting device exhibited excellent electrocatalytic activities toward the oxygen reduction reaction. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements demonstrated that the porous morphology and uniformly dispersed Fe;C nanoparticles of the PCCM play an important role in the oxygen reduction reaction. A linear response range from 2mmol/L up to 110 mmol/L and a detection limit of 1.4 mmol/L was obtained with this sensor. The repeatability of the proposed sensor,evaluated in terms of relative standard deviation, was 3.0%. The successful fabrication of PCCM/GC electrode may promote the development of new porous carbon oxygen reduction reaction material for the oxygen reduction sensor. 展开更多
关键词 Oxygen Sensor Porous carbon composite membrane electrode
原文传递
PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices 被引量:5
11
作者 Huawei Wang Jialong Gao +13 位作者 Changli Chen Wei Zhao Zihou Zhang Dong Li Ying Chen Chenyue Wang Cheng Zhu Xiaoxing Ke Jiajing Pei Juncai Dong Qi Chen Haibo Jin Maorong Chai Yujing Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期238-256,共19页
The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W... The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings.This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method.Single-atomic W can be found on the carbon surface,which can form protonic acid sites and establish an extended proton transport network at the catalyst surface.When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm^(−2),the peak power density of the cell is enhanced by 64.4%compared to that with the commercial Pt/C catalyst.The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of*OOH whereby the intermediates can be efficiently converted and further reduced to water,revealing a interfacial cascade catalysis facilitated by the single-atomic W.This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level. 展开更多
关键词 Fuel cells membrane electrode assembly PGM catalyst Synergistic catalysis Oxygen reduction
下载PDF
Enhancement of current density using effective membranes electrode assemblies for water electrolyser system 被引量:1
12
作者 Swaminathan Seetharaman Subash Chandrabose Raghu Kambiz Ansari Mahabadi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期77-84,共8页
The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focus... The goal of this study was to develop and design a composite proton exchange membrane(PEM) and membrane electrode assembly(MEA) that are suitable for the PEM based water electrolysis system. In particular,it focuses on the development of sulphonated polyether ether ketone(SPEEK) based membranes and caesium salt of silico-tungstic acid(Cs Si WA) matrix compared with one of the transition metal oxides such as titanium dioxide(TiO2), silicon dioxide(SiO2) and zirconium dioxide(ZrO2). The resultant membranes have been characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, ion exchange capacity(IEC), water uptake and atomic force microscopy. Comparative studies on the performance of MEAs were also conducted utilizing impregnation-reduction and conventional brush coating methods. The PEM electrolysis performance of SPEEK-Cs Si WA-ZrO2 composite membrane was more superior than that of other membranes involved in this study. Electrochemical characterization shows that a maximum current density of 1.4 A/cm^2 was achieved at 60 °C, explained by an increased concentration of protonic sites available at the interface. 展开更多
关键词 Composite membrane membrane electrode assembly Impregnation reduction method Brush coating method Electrolysis
下载PDF
Technical factors affecting the performance of anion exchange membrane water electrolyzer 被引量:1
13
作者 Xun Zhang Yakang Li +3 位作者 Wei Zhao Jiaxin Guo Pengfei Yin Tao Ling 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2259-2269,共11页
Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind ... Anion exchange membrane(AEM)electrolysis is a promising membrane-based green hydrogen production technology.However,AEM electrolysis still remains in its infancy,and the performance of AEM electrolyzers is far behind that of well-developed alkaline and proton exchange membrane electrolyzers.Therefore,breaking through the technical barriers of AEM electrolyzers is critical.On the basis of the analysis of the electrochemical performance tested in a single cell,electrochemical impedance spectroscopy,and the number of active sites,we evaluated the main technical factors that affect AEM electrolyzers.These factors included catalyst layer manufacturing(e.g.,catalyst,carbon black,and anionic ionomer)loadings,membrane electrode assembly,and testing conditions(e.g.,the KOH concentration in the electrolyte,electrolyte feeding mode,and operating temperature).The underlying mechanisms of the effects of these factors on AEM electrolyzer performance were also revealed.The irreversible voltage loss in the AEM electrolyzer was concluded to be mainly associated with the kinetics of the electrode reaction and the transport of electrons,ions,and gas-phase products involved in electrolysis.Based on the study results,the performance and stability of AEM electrolyzers were significantly improved. 展开更多
关键词 hydrogen production anion exchange membrane water electrolyzer CATALYST membrane electrode assembly
下载PDF
Boosting the optimization of membrane electrode assembly in proton exchange membrane fuel cells guided by explainable artificial intelligence
14
作者 Rui Ding Wenjuan Yin +6 位作者 Gang Cheng Yawen Chen Jiankang Wang Ran Wang Zhiyan Rui Jia Li Jianguo Liu 《Energy and AI》 2021年第3期217-227,共11页
The utilization of environmentally friendly hydrogen energy requires proton exchange membrane fuel cell de-vices that offer high power output while remaining affordable.However,the current optimization of their key co... The utilization of environmentally friendly hydrogen energy requires proton exchange membrane fuel cell de-vices that offer high power output while remaining affordable.However,the current optimization of their key component,i.e.,the membrane electrode assembly,is still based on intuition-guided,inefficient trial-and-error cycles due to its complexity.Hence,we introduce an innovative,explainable artificial intelligence(AI)tool trained as a reliable assistant for a variable analysis and optimum-value prediction.Among the 8 algorithms considered,the surrogate model built with an artificial neural network achieves high replaceability in the experimentally validated multiphysics simulation(R^(2)=0.99845)and a much lower computational cost.For interpretation,partial dependence plots and the Shapley value method are applied to black-box models to intelligently simulate the impact of each parameter on performance.These methods show that a tradeoff existed in the catalyst layer thickness.The AI-guided optimization suggestions regarding catalyst loading and the ion-omer content are fully supported by the experimental results,and the final product achieves 3.2 times the Pt utilization of commercial products with a time cost orders of magnitude smaller. 展开更多
关键词 Machine learning Proton exchange membrane fuel cells Artificial intelligence membrane electrode assembly Multiphysics simulation
原文传递
Electrochemical Removal of Chlorophenol Pollutants by Reactive Electrode Membranes: Scale-Up Strategy for Engineered Applications 被引量:3
15
作者 Shuzhao Pei Yi Wang +2 位作者 Shijie You Zhanguo Li Nanqi Ren 《Engineering》 SCIE EI 2022年第2期77-84,共8页
Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory p... Chlorophenols(CPs)are significant refractory pollutants that are highly toxic to humans and other organ-isms.Reactive electrode membranes(REMs)show considerable potential in the electrochemical removal of refractory pollutants by allowing flow-through operations with convection-enhanced mass transfer.However,relevant studies are commonly performed on the laboratory scale,and there is no straightfor-ward method that guarantees success in scaling up engineered REM reactors.In this study,we demon-strated that a tubular concentric electrode(TCE)configuration with a titanium suboxide ceramic anode and a stainless-steel cathode is suitable for large-scale CPs removal.Both theoretical and experi-mental results showed that the TCE configuration not only allows the electrode surface to be orthogonal to electric field lines everywhere,but also has an ohmic resistance that is inversely proportional to the length of the electrode.In addition,the TCE configuration can be operated in either the anode-to-cathode(AC)or the cathode-to-anode(CA)mode based on the flow direction,creating adjustable condi-tions for selective degradation of CPs.This was confirmed by 98%removal of 2,4-dichlorophenol(2,4-DCP)and 72.5%removal of chemical oxygen demand(COD)in the CA mode,in which the kinetic constant was one order of magnitude higher than that for the AC mode under flow-through single-pass operations.This can be explained by the lower activation energy and free energy in the CA mode,as revealed by the-oretical calculations and experimental measurements.The TCE configuration is also suitable for a numbering-up strategy to scale up the electrochemical reactor without increasing the ohmic resistance or decreasing the specific electrode area,achieving 99.4%removal of 2,4-DCP with an energy consump-tion of 1.5 kW·h·m^(-3) when three TCE modules were employed.This study presents a suitable electrode design configuration for the REM reactor,offering effective strategies to bridge the“Valley of Death”encountered when scaling up the electrochemical removal of CP pollutants. 展开更多
关键词 CHLOROPHENOLS Reactive electrode membrane Tubular concentric electrode Scale-up
下载PDF
A novel Ce(Ⅳ)ion-selective polyvinyl chloride membrane electrode based on HDEHP and HEH/EHP 被引量:1
16
作者 何金桂 李勇 +3 位作者 薛向欣 茹红强 黄小卫 杨合 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第9期934-940,共7页
A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such... A novel Ce(Ⅳ) ion-selective polyvinyl chloride(PVC) membrane electrode based on HDEHP and HEH/EHP as ionophore was successfully prepared. The factors affecting the response of Ce(Ⅳ) ion were investigated, such as membrane composition, internal solution, concentration of SO_4^(2–), and acidity in test solution. The best performance was obtained using the membrane with PVC:DBP:HDEHP:HEH/EHP:OA mass ratio of 75:175:5:5:5. The proposed electrode exhibited a Nernstian slope of 30.44 mV/decade for Ce(Ⅳ) ion over a linear concentration range of 1×10^(–5)–1×10^(–1) mol/L with the detection limit of 9.0×10^(-6) mol/L. The electrode showed stable response within the SO_4^(2–) concentration range of 0.1–1 mol/L and the acidity range of 0.25–1.2 mol/L H+. The proposed electrode showed high selectivity for Ce(Ⅳ) over a wide variety of interfering ions and a fast response time. It was used as an indicator in the potentiometric titration of Ce(Ⅳ) solution with H_2O_2 solution, and could also be used for the determination of Ce(Ⅳ) in real Ce(Ⅳ)-containing aqueous samples. 展开更多
关键词 Ce(Ⅳ) ion-selective electrode HDEHP HEH/EHP PVC membrane potential response rare earths
原文传递
Synthesis of Mn(Ⅲ) Complexes of New "Tailed" Porphyrins and Their Application as Carriers for PVC Membrane SCN-Anion-Selective Electrode
17
作者 Zhi Xian ZHOU Tie Sheng LI +1 位作者 Yu Zhong WANG Yang Jie WU (Department of Chemistry, Zhengzhou University, Zhengzhou 450052) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第11期997-999,0,共4页
Three new 'tailed' porphyrins and their corresponding Mn(Ⅲ) metalloporphyrins were synthesized and characterized. The potentiometric response characteristics of the PVC membrane electrode based on the Mn(Ⅲ... Three new 'tailed' porphyrins and their corresponding Mn(Ⅲ) metalloporphyrins were synthesized and characterized. The potentiometric response characteristics of the PVC membrane electrode based on the Mn(Ⅲ) complexes of the three new 'tailed' porphyrins toward SCN- have been studied. 展开更多
关键词 SCN PVC Complexes of New Porphyrins and Their Application as Carriers for PVC membrane SCN-Anion-Selective electrode Tailed
下载PDF
A Cu-Pd alloy catalyst with partial phase separation for the electrochemical CO_(2) reduction reaction
18
作者 Gyeong Ho Han Jung Yong Seo +4 位作者 Minji Kang Myung-gi Seo Youngheon Choi Soo Young Kim Sang Hyun Ahn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期8-15,I0001,共9页
Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single prod... Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored. 展开更多
关键词 Cu-Pd catalyst electrodePOSITION Electrochemical carbon dioxide reduction Partial phase separation membrane electrode assembly-based electrolyzer
下载PDF
A cascade of in situ conversion of bicarbonate to CO_(2) and CO_(2) electroreduction in a flow cell with a Ni-N-S catalyst
19
作者 Linghui Kong Min Wang +6 位作者 Yongxiao Tuo Shanshan Zhou Jinxiu Wang Guangbo Liu Xuejing Cui Jiali Wang Luhua Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期183-193,I0005,共12页
Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electroche... Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals. 展开更多
关键词 S doped Ni-N-C single atom catalysts CO_(2)electrochemical reduction DFT calculations membrane electrode assembly Reduction of bicarbonate
下载PDF
Mushroom Pulp Tissue-Based Membrane-Ferrocene-Modified L-Tyrosine Biosensor
20
作者 马全红 邓家祺 《Journal of Southeast University(English Edition)》 EI CAS 2000年第1期106-110,共5页
A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase ... A new approach for assembling amperometric mushroom pulp tissue based membrane electrode for determination of L tyrosine analysis is proposed. Ferrocene is used as a mediator of electron transfer between tyrosinase in mushroom tissue and a graphite electrode. The optimal operation conditions are studied. The linear response range of the biosensor is 2 0×10 -4 to 4 5×10 -3 mol·L -1 with response time of less than 5 min and lifetime of at least 30 d. The biosensor can be applied to practical sample analysis. 展开更多
关键词 BIOSENSOR tissue based membrane electrode modified electrode FERROCENE L tyrosine
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部