期刊文献+
共找到2,155篇文章
< 1 2 108 >
每页显示 20 50 100
Effect of Quercetin on the Proliferation and Mitochondrial Transmembrane Potential of CBRH-7919 Cells 被引量:1
1
作者 马朋 曹同涛 +2 位作者 于敏 闫苗苗 牛新华 《Agricultural Science & Technology》 CAS 2012年第2期245-247,共3页
[Objective] To investigate the effect of quercetin on the proliferation and mitochondrial transmembrane potential of CBRH-7919 cells. [Method] The CBRH-7919 cells of hepatocarcinoma were cultured in vitro. After treat... [Objective] To investigate the effect of quercetin on the proliferation and mitochondrial transmembrane potential of CBRH-7919 cells. [Method] The CBRH-7919 cells of hepatocarcinoma were cultured in vitro. After treated with different concentrations of quercetin, the OD405 nm of CBRH-7919 cells was detected by using the acid phosphatase assy (APA); morphologic changes of the cells were observed under inverted microscope; the mitochondrial transmembrane potential (△ψm) intensity changes of CBRH-7919 cells were analyzed by flow cytometry after stained with Rhodamine 123. [Result] Quercetin inhibited the proliferation of CBRH-7919 cells significantly, and the growth inhibitory effect presented time- and dose-dependent relationship. Typical decrease of cell density was observed by optical microscopy on the quercetin-treated cells. With the effect of 10 μg/ml quercetin on CBRH-7919 cells for 12, 24 and 48 h, the percentage of Rhodamine 123 stained hypofluorescence cells increased, while the mitochondrial transmembrane potential(△ψm) intensity of CBRH-7919 cells decreased. [Conclusion] Quercetin could inhibit the proliferation of CBRH-7919 cells in vitro, causing the decrease in mitochondrial transmembrane potential. 展开更多
关键词 QUERCETIN HEPATOCARCINOMA mitochondrial transmembrane potential
下载PDF
Interventional effect of phycocyanin on mitochondrial membrane potential and activity of PC12 cells after hypoxia/reoxygenation 被引量:3
2
作者 Nan Jiang Yunliang Guo Hongbing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期137-139,共3页
BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of... BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation. OBJECTIVE: To observe the effect of phycocyanin on activity of PC12 cells and mitochondrial membrane potential after hypoxia/reoxygenation. DESIGN: Randomized controlled study SETTING : Cerebrovascular Disease Institute of Affiliated Hospital, Medical College of Qingdao University MATERIALS: The experiment was carried out at the Key Laboratory of Prevention and Cure for cerebropathia in Shandong Province from October to December 2005. PC12 cells, rat chromaffin tumor cells, were provided by Storage Center of Wuhan University; phycocyanin was provided by Ocean Institute of Academia Sinica; Thiazoyl blue tetrazolium bromide (MTT) and rhodamine 123 were purchased from Sigma Company, USA; RPMI-1640 medium, fetal bovine serum and equine serum were purchased from Gibco Company, USA. METHODS: ① Culture of PC12 cells: PC12 cells were put into RPMI-1640 medium which contained 100 g/L heat inactivation equine serum and 0.05 volume fraction of fetal bovine serum and incubated in CO2 incubator at 37℃. Number of cells was regulated to 4 × 10^5 L 1, and cells were inoculated at 96-well culture plate. The final volume was 100μL. ② Model establishing and grouping: Cultured PC12 cells were randomly divided into three groups: phycocyanin group, model control group and non-hypoxia group. At 24 hours before hypoxia, culture solution in phycocyanin group was added with phycocyanin so as to make sure the final concentration of 3 g/L , but cells in model control group did not add with phycocyanin. Cells in non-hypoxia group were also randomly divided into adding phycocyanin group (the final concentration of 3 g/L) and non-adding phycocyanin group. Cells in model control group and phycocyanin group were cultured with hypoxia for 1 hour and reoxygenation for 1, 2 and 3 hours; meanwhile, cells in non-hypoxia group were cultured with oxygen and were measured at 1 hour after hypoxia/reoxygenation. ③ Detecting items: At 1, 2 and 3 hours after reoxygenation, absorbance (A value) of PC12 cells was measured with MTT technique so as to observe activity and quantity of cells. Fluorescence intensity of PC12 cells marked by rhodamine 123 was measured with confocal microscope in order to observe changes of mitochondrial membrane potential. MAEN OUTCOME MEASURES: Comparisons between quantity and activity of PC12 cells and mitochondria membrane potential at 1, 2 and 3 hours after reoxygenation. RESULTS: ① Effect of phycocyanin on quantity and activity of PC12 cells: A value was 0.924±0.027 in adding phycocyanin group and 0.924±0.033 in non-adding phycocyanin group. A value was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after reoxygenation (0.817±0.053, 0.838±0.037, 0.875±0.029; 0.842±0.029, 0.872±0.025, 0.906±0.023, P 〈 0.05). A value was higher in phycocyanin group than that in model control group at 1, 2 and 3 after culture (P 〈 0.05). With culture time being longer, A value was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). ~ Effect of phycocyanin on mitochondrial membrane potential of PC12 cells: Fluorescence intensity was 2.967±0.253 in adding phycocyanin group and 2.962±0.294 in non-adding phycocyanin group. Fluorescence intensity was lower in model control group and phycocyanin group than that in non-hypoxia group at 1, 2 and 3 hours after hypoxia/reoxygenation (1.899±0.397, 2.119±0.414, 2.287±0.402; 2.191±0.377, 2.264±0.359, 2.436±0.471, P 〈 0.05); but it was higher in phycocyanin group than that in model control group at 1, 2 and 3 after reoxygenation (P 〈 0.05). With culture time being longer, fluorescence intensity was increased gradually in phycocyanin group and model control group after reoxygenation (P 〈 0.05). CONCLUSION: Phycocyanin and reoxygenation can protect PC12 cells after hypoxia injury through increasing mitochondrial membrane potential and cellular activity, and the effect is improved gradually with prolonging time of reoxygenation. 展开更多
关键词 Interventional effect of phycocyanin on mitochondrial membrane potential and activity of PC12 cells after hypoxia/reoxygenation PC
下载PDF
Berbamine induces apoptosis in human hepatoma cell line SMMC7721 by loss in mitochondrial transmembrane potential and caspase activation 被引量:15
3
作者 WANG Guan-yu ZHANG Jia-wei +2 位作者 LU Qing-hua XU Rong-zhen DONG Qing-hua 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第4期248-255,共8页
Objective: To investigate the effect ofberbamine on human hepatoma cell line SMMC7721. Methods: The effects of 24 h and 48 h incubation with different concentrations (0-64 μg/ml) of the berbamine on SMMC7721 cell... Objective: To investigate the effect ofberbamine on human hepatoma cell line SMMC7721. Methods: The effects of 24 h and 48 h incubation with different concentrations (0-64 μg/ml) of the berbamine on SMMC7721 cells were evaluated using 3-4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. Hoechst 33258 staining was conducted to distinguish the apoptotic cell, and the appearance of sub-G1 stage was determined by PI (propidium iodide) staining, the percentage of apoptotic cell was determined by flow cytometry following annexin V/PI staining. Flow cytometry was performed to analyze the cell cycle distribution and the mitochondrial membrane potential (△ψm), the expression of activated caspase3 and caspase9 was analyzed by Western-blot. Results: The proliferation of SMMC7721 was decreased after treatment with berbamine in a dose- and time-dependent manner. Berbamine could induce apoptosis in SMMC7721 cells and could cause cell cycle arrest in G0/G1 phase, to induce loss of mitochondrial membrane potential (AVm) and activate caspase3 and caspase9. Berbamine-induced apoptosis could be blocked by the broad caspase inhibitor z-VAD-fmk. Conclusion: Berbamine exerts antiproliferative effects on human hepatocellular carcinoma SMMC7721 cells. The anticancer activity of berbamine could be attributed partly to its inhibition of cell proliferation and induction of apoptosis in cancer cells through loss in mitochondrial transmembrane potential and caspase activation. 展开更多
关键词 BERBAMINE APOPTOSIS mitochondrial membrane potential CASPASE HEPATOMA
下载PDF
Effect of rhTNF-α on Mitochondrial Transmembrane Potential and Motility of Human Sperm in vitro by Flow Cytometry and Computer Aided of Semen Analysis 被引量:1
4
作者 Jiang BIAN Wei CHEN +3 位作者 Xian-kun GUO Cheng-liang XIONG Yan ZHANG Yong NEP 《Journal of Reproduction and Contraception》 CAS 2005年第2期89-98,共10页
To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men... To evaluate effect of recombined human tumor necrosis factor (rhTNF- α) on mitochondrial transmembrane potential and motility of human sperm in vitro Methods Semen samples for study were obtained from 40 health men (average age 26 ± 1.2 years) with normal semen analysis. Sperm suspension with computer aided of semen analysis (CASA) technique; 2) were stained in the presence of 10 μg/ml Rh123 and PI, mitochondrial transmembrane potential of those was analyzed by flow cytometry (FCM). Results Significant differences were found between experimental groups and control groups on viability, straight line velocity, curvilinear velocity, average path velocity, progressive motility of human sperm and number of sperm with normal mitochondrial transmembrane potential (P〈0.01) expect final concentration 30 pg/ml group (P〉0. 05). Sperm motility lowed with increasing rhTNF-α concentration and incubating time (P〈0. 01). Number of sperm with normal mitochondrial transmembrane potential decreased with increasing rhTNF-α concentration and incubating time (P〈0.01). Conclusion rh TNF-α can decrease human sperm motility function in vitro, which can interfere the function of human sperm mitochondrial transmembrane potential and may inhibit sperm mitochondrial enzymatic activities. 展开更多
关键词 HUMAN SPERM mitochondrial transmembrane potential RHTNF-Α
下载PDF
JTE-522-induced apoptosis in human gastric adenocarinoma cell line AGS cells by caspase activation accompanying cytochrome C release,membrane translocation of Bax and loss of mitochondrial membrane potential 被引量:16
5
作者 Hong-Liang Li Xiao-Hong Li Jun-Hua Lü Xian-Da Ren,Department of Pharmacology,Jinan University Pharmacy College,Guangzhou 510632,Guangdong Province,China Dan-Dan Chen,Department of Cardiology,First Affiliated Hospital,Zhongshan University,Guangzhou 510089,Guangdong Province,China Hai-Wei Zhang,Department of Pathology,Jinan University Medical College,Guangzhou 510632,Guangdong Province,China Cun-Chuan Wang,Department of laparoscopic surgery,First Affiliated Hospital,Jinan University Medical College,Guangzhou 510632,Guangdong Province,China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2002年第2期217-223,共7页
AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (D... AIM: To investigate the role of the mitochondrial pathway in JTE-522-induced apoptosis and to investigate the relationship between cytochrome C release, caspase activity and loss of mitochondrial membrane potential (Deltapsim). METHODS: Cell culture, cell counting, ELISA assay, TUNEL, flow cytometry, Western blot and fluorometric assay were employed to investigate the effect of JTE-522 on cell proliferation and apoptosis in AGS cells and related molecular mechanism. RESULTS: JTE-522 inhibited the growth of AGS cells and induced the apoptosis. Caspases 8 and 9 were activated during apoptosis as judged by the appearance of cleavage products from procaspase and the caspase activities to cleave specific fluorogenic substrates. To elucidate whether the activation of caspases 8 and 9 was required for the apoptosis induction, we examined the effect of caspase-specific inhibitors on apoptosis. The results showed that caspase inhibitors significantly inhibited the apoptosis induced by JTE-522. In addition, the membrane translocation of Bax and cytosolic release of cytochrome C accompanying with the decrease of the uptake of Rhodamin 123, were detected at an early stage of apoptosis. Furthermore, Bax translocation, cytochrome C release, and caspase 9 activation were blocked by Z-VAD.fmk and Z-IETD-CHO. CONCLUSION: The present data indicate a crucial association between activation of caspases 8, 9, cytochrome C release, membrane translocation of Bax, loss of Deltapsim and JTE-522-induced apoptosis in AGS cells. 展开更多
关键词 Adenocarcinoma Stomach Neoplasms Amino Acid Chloromethyl Ketones Anti-Inflammatory Agents Non-Steroidal Apoptosis BENZENESULFONATES CASPASES inhibitors Cyclooxygenase Inhibitors Cysteine Proteinase Inhibitors Cytochrome c Group Enzyme Activation Humans In Situ Nick-End Labeling membrane potentials Mitochondria OXAZOLES Proto-Oncogene Proteins Proto-Oncogene Proteins c-bcl-2 Research Support Non-U.S. Gov't Tumor Cells Cultured bcl-2-Associated X Protein
下载PDF
Inhibition of phosphodiesterase 4 by FCPR16 protects SH-SY5Y cells against MPP^+ -induced decline of mitochondrial membrane potential and oxidative stress 被引量:10
6
作者 ZHONG Jia-hong XIE Jin-feng +4 位作者 XIAO Jiao LI Dan ZHOU Zhong-zhen WANG Hai-tao XU Jiang-ping 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期699-700,共2页
Parkinson disease(PD) is a chronic neurodegenerative disorder caused by progressive dopaminergic neuronal death in the substantia nigra pars compacta within the midbrain.There still is no cure,effective treatments for... Parkinson disease(PD) is a chronic neurodegenerative disorder caused by progressive dopaminergic neuronal death in the substantia nigra pars compacta within the midbrain.There still is no cure,effective treatments for PD,available therapies are only capable of offering temporary and symptomatic relief to the patients.There are certain patents that claim phosphodiesterase(PDE) inhibitors as possible anti-PD drugs,PDE4 is a promising target for the treatment of PD and the underlying mechanism has not yet been well elucidated.PDE4 is an enzyme that specifically hydrolyzes intracellular cyclic adenosine monophosphate(cAMP)throughout the body,including the brain.Most of the available PDE4 inhibitors exert unpleasant and serious side effects,such as emesis and nausea,which hinder its clinical application.Therefore,more efforts are needed before PDE4 inhibitors with high therapeutic indices are available for treatment of PD.FCPR16 is a novel PDE4 inhibitor with little emetic potential,which exhibits excellent enzyme inhibition activity(IC50=90 nmol·L^(-1)).METHODS SH-SY5 Y cell was induced with 1-methyl-4-phenylpyridinium(MPP+)to mimic PD cell injury in vitro,and CCK-8 assay was used to investigate the viability effects of different concentration of FCPR16(3.1-50 μmol·L^(-1)) on MPP+-injured SH-SY5 Y cells.Detection of apoptosis was performed by flow cytometry.The level of ntracellular reactive oxygen species was detected with the fluorescent probe DCFH-DA,and the mitochondrial membrane potential of cells in different experimental groups was detected with the JC-1 fluorescent probe.AO staining and Lysotracker Red staining were used to detect the intracellular antophagy changes.The expression of apoptosis related proteins,autophagy and other related signal molecules were demonstrated by Western blotting.Different cellular signaling pathway inhibitors were used to invesitigate the specific cellular mechanisms of FCPR16 protecting MPP+-induced cell injury.RESULTS FCPR16(12.5-50 μmol·L^(-1)) dose-dependently reduced MPP+-induced decline of cell viability,accompanied by reductions in nuclear condensation and lactate dehydrogenase release.The level of cleaved caspase 3 and the ratio of Bax/Bcl-2 were also decreased after treatment with FCPR16 in MPP+-treated cells.Furthermore,FCPR16(25 μmol·L^(-1)) significantly suppressed the accumulation of reactive oxygen species(ROS),prevented the decline of mitochondrial membrane potential(Δψm) and attenuated the expression of malonaldehyde level.Further studies disclosed that FCPR16 enhanced the levels of cA MP and the exchange protein directly activated by cA MP(Epac) in SHSY5 Y cel s.Western blotting analysis revealed that FCPR16 increased the phosphorylation of c AMP response element-binding protein(CREB) and protein kinase B(Akt)down-regulated by MPP+in SHSY5 Y cells.Moreover,the inhibitory effects of FCPR16 on the production of ROS and Δψm loss could be blocked by PKA inhibitor H-89 and Akt inhibitor KRX-0401.CONCLUSION The novel PDE4 inhibitor FCPR16 can protect against damaging pathways including oxidative stress,mitochondrial dysfunction and apoptosis in SH-SY5 Y cells.FCPR16 preventes MPP+-induced neurotoxicity through activation of cAMP/PKA/CREB and Epac/Akt signaling pathways.These may lead to develop mechanism based therapeutics and improved pharmacotherapy for PD.It is reasonable to assume that FCPR16 is a potential candidate for the prevention and treatment of PD. 展开更多
关键词 PHOSPHODIESTERASE 4 FCPR16 oxidative stress mitochondrial membrane potential PARKINSON disease
下载PDF
YB-1 downregulation attenuates UQCRC1 protein expression level in H9C2 cells and decreases the mitochondrial membrane potential
7
作者 HUIFANG CHEN XIAOYING ZHOU +2 位作者 ZONGHONG LONG XIANGLONG TANG HONG LI 《BIOCELL》 SCIE 2020年第3期371-379,共9页
UQCRC1 is one of the 10 mitochondrial complex III subunits,this protein has a role in energy metabolism,myocardial protection,and neurological diseases.The upstream mechanism of the UQCRC1 protective effect on cardiom... UQCRC1 is one of the 10 mitochondrial complex III subunits,this protein has a role in energy metabolism,myocardial protection,and neurological diseases.The upstream mechanism of the UQCRC1 protective effect on cardiomyocytes is currently unavailable.In order to explore the upstream molecules of UQCRC1 and elucidate the protective mechanism of UQCRC1 on cardiomyocytes in more detail,we focused on the nuclease-sensitive elementbinding protein 1(YB-1).We hypothesized YB-1 acts as an upstream regulatory molecule of UQCRC1.This study found that YB-1 RNAi significantly reduces the expression of the UQCRC1 protein level(p<0.05)and obviously decreases the mitochondrial membrane potential(p<0.05),and that YB-1 interacts with UQCRC1 protein in vivo,but YB-1 RNAi has little effect on the UQCRC1 gene transcription. 展开更多
关键词 siRNA mitochondrial membrane potential CARDIOMYOCYTES
下载PDF
Cannabidiol (CBD) Prevents Palmitic Acid-Induced Drop in Mitochondrial Membrane Potential
8
作者 R. Gallily Z. Yekhtin +1 位作者 M. Tarshis R. Vogt Sionov 《Pharmacology & Pharmacy》 2019年第9期387-395,共9页
Exposure of macrophages and microglia cells to the saturated palmitic acid (PA) leads to reduction in the mitochondrial membrane potential (), shrinkage of the cells and apoptosis. Here we show that the Cannabis compo... Exposure of macrophages and microglia cells to the saturated palmitic acid (PA) leads to reduction in the mitochondrial membrane potential (), shrinkage of the cells and apoptosis. Here we show that the Cannabis component Cannabidiol (CBD) rescues both macrophages and microglia cells from the detrimental effects of PA. CBD prevents the shrinkage in cell size and the reduction incaused by PA. The protective effect of CBD on the macrophage mitochondria is important for sustaining the macrophage population even under the immunosuppressed conditions caused by this drug. To a similar extent, the antagonistic effect of CBD on PA-mediated microglia cytotoxicity is important for its role in neuroprotection. 展开更多
关键词 CBD mitochondrial membrane potential MACROPHAGES MICROGLIA Palmitic Acid
下载PDF
Immp2l Mutation Induces Mitochondrial Membrane Depolarization and Complex Ⅲ Activity Suppression after Middle Cerebral Artery Occlusion in Mice
9
作者 Yi MA Rui-min LIANG +5 位作者 Ning MA Xiao-juan MI Zheng-yi CHENG Zi-jing ZHANG Bai-song LU P.Andy LI 《Current Medical Science》 SCIE CAS 2023年第3期478-488,共11页
Objective We previously reported that mutations in inner mitochondrial membrane peptidase 2-like(Immp2l)increase infarct volume,enhance superoxide production,and suppress mitochondrial respiration after transient cere... Objective We previously reported that mutations in inner mitochondrial membrane peptidase 2-like(Immp2l)increase infarct volume,enhance superoxide production,and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury.The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice.Methods Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0,1,5,and 24 h of reperfusion.The effects of Immp2l^(+/−)on mitochondrial membrane potential,mitochondrial respiratory complex III activity,caspase-3,and apoptosis-inducing factor(AIF)translocation were examined.Results Immp2l^(+/−)increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice.Immp2l^(+/−)led to mitochondrial damage,mitochondrial membrane potential depolarization,mitochondrial respiratory complex III activity suppression,caspase-3 activation,and AIF nuclear translocation.Conclusion The adverse impact of Immp2l^(+/−)on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential,inhibition of the mitochondrial respiratory complex III,and activation of mitochondria-mediated cell death pathways.These results suggest that patients with stroke carrying Immp2l^(+/−)might have worse and more severe infarcts,followed by a worse prognosis than those without Immp2l mutations. 展开更多
关键词 cerebral ischemia inner mitochondrial membrane peptidase 2-like mitochondrial membrane potential mitochondrial complex III apoptosis
下载PDF
Effect on apoptosis、mitochondrial membrane potential and Ca^(2+) concentration in HepG-2 by CSEO
10
作者 JI Yu-bin1,2,3,YU Lei1,2,3,WANG Wei1,2,ZOU Xiang1,2,3(1.Center of Research and Development on Life Sciences and Environmental Sciences,Harbin University of Commerce,Harbin 150076,China 2.Institute of Materia Medica and Postdoctoral Programme of Harbin University of Commerce,Harbin 150076,China 3.Engineering Research Center of Natural Anti-cancer Drags,Ministry of Education,Harbin 150076,China) 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期70-70,共1页
Objective To study on the mechanism of growth inhibiting and apoptosis inducing effect of total alkaloid in the CSEO(Capparis spinosa L.essential oil,CSEO)on human hepatocarcinoma cell Line HepG-2.Methods The growth i... Objective To study on the mechanism of growth inhibiting and apoptosis inducing effect of total alkaloid in the CSEO(Capparis spinosa L.essential oil,CSEO)on human hepatocarcinoma cell Line HepG-2.Methods The growth inhibiting effect of the CSEO on human hepatocarcinoma cell Line HepG-2 was measured by MTT method.Morphological observation of the HepG-2 cells was completed by fluorescence microscope.The changing of mitochondrion membrane potential induced by CSEO was observed by staining with Rhodamine123.Effect of the CSEO on intracellular Ca2+ level of the HepG-2 cells was measured by laser confocal microscope.Results The CESO has obvious growth inhibiting effect on the HepG-2 and seems to be dose-dependent,and its IC50 is 127.5 μg·mL-1.The characteristic apoptosis morpha of HepG-2 cells has been observed,and the apoptosis percentage increase to 44.447% in the 300 μg·mL-1 dosage group.In addition,the progress of cells cycle of G1 period has been blocked,and the cellular proportion in S and G2 period is decreased in the 75 μg·mL-1 and 150 μg·mL-1 dosage groups by the function of CSEO for 48 h.The mitochondria membrane potential(Δψm)effected by CESO is decreased,while the curve moves toward left.In addition,the intracellular Ca2+ level is increased by the function of CESO in the middle and high dose groups.Conclusions The CESO has obviously growth inhibiting and apoptosis inducing effect on human hepatocarcinoma cell Line HepG-2 by the mechanism of decreasing the mitochondria membrane potential and increasing the intracellular Ca2+ level. 展开更多
关键词 CESO human HEPATOCARCINOMA cell line HEPG-2 APOPTOSIS mitochondrial TRANSmembrane potential Ca2+ CONCENTRATION
下载PDF
Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities 被引量:4
11
作者 ZHAOZhong-qiu ZHENGHai-lei ZHUYong-guan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期742-745,共4页
The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kandelia candel were cultivated in sand with various salinities(0‰, 10‰, 20‰, 30‰, 40‰) for 60 d. Plasma membrane vesicles of high-p... The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kandelia candel were cultivated in sand with various salinities(0‰, 10‰, 20‰, 30‰, 40‰) for 60 d. Plasma membrane vesicles of high-purity in leaves and roots of A.marina and K. candel seedlings were obtained by two-phase partitioning. The function of the plasma membranes, the activity of ATPase, membrane potential and transmembrane proton gradient, at various salinities were investigated. The results showed that within a certain range of salinity(A. marina and roots of K. candel: 0—30‰; leaves of K.candel: 0—20‰), the activity of ATPase increased with increasing salinity, while high salinity(above 30‰ or 20‰) inhibited ATPase activity. In comparison with A. marina, K. candel appeared to be more sensitive to salinity. The dynamics of membrane potential and transmembrane proton gradient in leaves and roots of A. marina and K. candel seedlings were similar to that of ATPase. When treated directly by NaCl all the indexes were inhibited markedly: there was a little increase within 0—10‰(K. candel) or 0—20‰(A. marina) followed by sharp declining. It indicated that the structure and function of plasma membrane was damaged severely. 展开更多
关键词 salinity A. marina K. candel plasma membrane H-ATPase CA-ATPASE membrane potential transmembrane proton gradient
下载PDF
Effect of solanine on the membrane potential of mitochondria in HepG_2 cells and [Ca^(2+)]i in the cells 被引量:17
12
作者 Shi-Yong Gao Qiu-Juan Wang Yu-Bin Ji 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第21期3359-3367,共9页
AIM: To observe the effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca^2+]i in the cells, and to uncover the mechanism by which solanine induces apoptosis.METHODS: HepG2 cells were ... AIM: To observe the effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca^2+]i in the cells, and to uncover the mechanism by which solanine induces apoptosis.METHODS: HepG2 cells were double stained with AO/EB, and morphological changes of the cells were observed using laser confocal scanning microscopy (LCSM). HepG2 cells were stained with TMRE, and change in the membrane potential of mitochondria in the cells were observed using LCSM. HepG2 cells were double stained with Fluo-3/AM, and change of [Ca^2+]i in the cells were observed using LCSM. HepG2 cells were double stained with TMRE and Fluo-3/AM, and both the change in membrane potential of mitochondria and that of [Ca^2+]i in the cells were observed using LCSM.RESULTS: Cells in treated groups showed typical signs of apoptosis. Staining with TMRE showed that solanine could lower membrane potential; staining with Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in tumor cells; and those of double staining with TMRE and Fluo-3/AM showed that solanine could increase the concentration of Ca^2+ in the cells at the same time as it lowered the membrane potential of mitochondria.CONCLUSION: Solanine opens up the PT channels in the membrane by lowering the membrane potential, leading to Ca^2+ being transported down its concentration gradient, which in turn leads to the rise of the concentration of Ca^2+ in the cell, turning on the mechanism for apoptosis. 展开更多
关键词 SOLANINE Hepatocarcinomatic cell Ca^2+ in the cell membrane potential Laser confocal scanning microscopy
下载PDF
Effects of NaCI and Ca^(2+) on Membrane Potential of Epidermal Cells of Maize Roots 被引量:3
13
作者 HUA Jia-min WANG Xiao-li +2 位作者 ZHAI Fu-qin YAN Feng FENG Ke 《Agricultural Sciences in China》 CAS CSCD 2008年第3期291-296,共6页
The effects of salt-stress on plants involve not only the water stress caused by low osmotic pressure, but also the toxicity of excess Na^+. A large amount of Na^+ entering cells would reduce K^+ uptake, which lead... The effects of salt-stress on plants involve not only the water stress caused by low osmotic pressure, but also the toxicity of excess Na^+. A large amount of Na^+ entering cells would reduce K^+ uptake, which leads to an imbalance of K:Na ratio in cells. One of the reasons for the reduced K^+-uptake is the closure of K^+-channel which is controlled by membrane potential. Calcium is usually applied to improve the growth of plants on saline soils and shows positive influence in the integrality of cell membrane. This study applied glass microelectrode technique to monitoring the NaCl-induced changes of membrane potential of root epidermal cells of maize (Zea mays L., Denghai 11) seedlings at NaCl concentrations of 0, 8, 20, 50, 100, 200 mmol L^-1, respectively. The effect of Ca^2+ on the changes of membrane potential caused by NaCl was also studied. The results showed that: NaCl caused cell membrane depolarization. The depolarization became greater and faster with increasing of NaCl concentration. Moreover, the extent of depolarization was positively correlated with NaCl concentration. The addition of calcium postponed the depolarization, and decreased the degree of depolarization caused by NaCl. High NaCl concentration leads to depolarization of maize root cell membrane, which can partly be counteracted by calcium. 展开更多
关键词 membrane potential sodium chloride CALCIUM epidermal cells maize root
下载PDF
The Measurement of Membrane Potential and NO3 Activity in Root Cells Using Ion-Selective Microelectrodes 被引量:3
14
作者 FANXiao-rong AnthonyJMiller SHENQi-rong 《Agricultural Sciences in China》 CAS CSCD 2003年第10期1097-1101,共5页
Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a n... Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a non-destructive and non-interruptive method to measure NO 3 gradients and electric potential differences across both the plasma membrane and tonoplast. Thus, a double-barrelled microelectrode backfilled with a membrane sensor for NO 3 embedded in poly vinyl chloride (PVC) can record the NO 3 activity in cytoplasm and vacuole of a cell. This paper presented how to make this kind of microelectrode and how to do the intracellular measurements on intact plants. Our result showed that nitrate activity was about 2.7 mmol L 1 in cytoplasm while 70 mmol L 1 in vacuole, which implicated that vacuole was a pool of nitrate in plants. 展开更多
关键词 Ion-selective microelectrodes membrane potential NO 3 activity
下载PDF
Effects of La^(3+)on H^+ Transmembrane Gradient and Membrane Potential in Rice Seedling Roots 被引量:1
15
作者 郑海雷 张春光 +2 位作者 赵中秋 马建华 李利 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第3期234-237,共4页
The effects of LaCl 3 on membrane potential and transmembrane proton gradient for rice ( Oryza sativa ) seedling roots were studied. Highly purified plasma membrane was isolated by aqueous two phase partitioning m... The effects of LaCl 3 on membrane potential and transmembrane proton gradient for rice ( Oryza sativa ) seedling roots were studied. Highly purified plasma membrane was isolated by aqueous two phase partitioning method. Both the gradient of transmembrane proton and membrane potential were stimulated by certain low concentration of LaCl 3 and depressed by high concentration of LaCl 3. The optimal concentration of La 3+ is around 40~60 μmol·L -1 for transmembrane proton gradient and membrane potential. It shows that La 3+ can influence the generations and maintenances of membrane potential and transmembrane proton gradient in rice seedling roots. 展开更多
关键词 rare earths RICE membrane potential transmembrane proton gradient
下载PDF
Ammonium Effects on Nitrate Uptake by Roots of Upland and Paddy Rice Seedlings Related to Membrane Potential Differences 被引量:1
16
作者 WANG Xiao-li WANG Yu-qian TAO Yue-yue FENG Ke 《Agricultural Sciences in China》 CAS CSCD 2010年第6期799-805,共7页
Nitrate uptake characteristics and ammonium effects on nitrate uptake were compared between upland rice (Brazilian upland rice) and paddy rice (Wuyujing 3 and Yangdao 6) through the glass microelectrode technique ... Nitrate uptake characteristics and ammonium effects on nitrate uptake were compared between upland rice (Brazilian upland rice) and paddy rice (Wuyujing 3 and Yangdao 6) through the glass microelectrode technique and the concentration gradient method of uptake kinetics.Results indicated that nitrate uptake by rice seedlings and ammonium effects were depending on membrane potential of root cells.And upland rice and paddy rice presented obviously different responses.For all cultivars,the nitrate treatments induced rapid depolarization and then slow repolarization of membrane potential in root epidermal cells,and even hyperpolarization was observed when nitrate concentration was low.The membrane potential of epidermal cells in Brazilian upland rice roots was larger and its response to NO3- was bigger than those of two paddy rice cultivars.Depolarization of membrane potential was amplified when ammonium was simultaneously added with nitrate into the measure medium,but repolarization was reduced,even disappeared.Brazilian upland rice seedlings had high Vmax of nitrate uptake and low Km,furthermore,Vmax and Km were little affected by ammonium,but Vmax of Wuyujing 3 was reduced significantly.Therefore,inhibition of NH4+ differed obviously between upland rice and paddy rice. 展开更多
关键词 nitrate uptake membrane potential AMMONIUM upland rice paddy rice
下载PDF
K^+ Channels and Their Effects on Membrane Potential in Rat Bronchial Smooth Muscle Cells
17
作者 刘先胜 徐永健 +1 位作者 张珍祥 倪望 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2003年第2期141-144,150,共5页
In order to investigate the K+ channels and their effects on resting membrane potential (Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+ channel currents and the effects... In order to investigate the K+ channels and their effects on resting membrane potential (Em) and excitability in rat bronchial smooth muscle cells (BSMCs), the components of outward K+ channel currents and the effects of K+ channels on Em and tension in rat bronchial smooth muscle were observed by using standard whole-cell recording of patch clamp and isometric tension recording techniques. The results showed that under resting conditions, total outward K+ channel currents in freshly isolated BSMCs were unaffected by ATP-sensitive K+ channel blocker. There were two types of K+ currents: voltage-dependent delayed rectifier K+ channel (Kv) and large conductance calcium-activated K+ channel (BKc.) currents. 1 mmol/L 4-aminopyridine (4-AP, an inhibitor of Kv) caused a significant depolarization (from -8. 7±5. 9 mV to -25. 4±3. 1 mV, n=18, P<0. 001). In contrast, 1 mmol/L tetraethylammonium (TEA, an inhibitor of BKc.) had no significant effect on Em (from -37. 6±4. 8 mV to -36. 8±4.1mV, n=12, P>0. 05). 4-AP caused a concentration-dependent contraction in resting bronchial strips. TEA had no effect on resting tension, but application of 5 mmol/L TEA resulted in a left shift with bigger pD2(the negative logarithm of the drug concentration causing 50% of maximal effect) (from 6. 27±0. 38 to 6. 89±0. 54, n= 10, P<0. 05) in the concentration-effect curve of endothine-1, and a right shift with smaller pD2(from 8. 10±0. 23 to 7. 69±0. 08, n=10, P<0. 05) in the concentration-effect curve of isoprenaline. It was suggested that in rat BSMCs there may be two types of K+ channels, Kv and BKca, which serve distinct roles. Kv participates in the control of resting Em and tension. BKca is involved in the regulation of relaxation or contraction associated with excitation. 展开更多
关键词 airway smooth muscle cells K+ channel membrane potential
下载PDF
Membrane Potentials Across Hybrid Charged Mosaic Membrane in Organic Solutions
18
作者 刘俊生 徐铜文 +1 位作者 祝熙宇 傅延勋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3期330-336,共7页
Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethyl... Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethylene glycol, ethanol, n-propanol and glycerol were used as organic solutes; meanwhile 0.001mol-dm^-3 aqueous KCl solution was utilized as a strong electrolyte to measure the electrical difference. Equilibrium swelling degree indicated that it could be affected by the density of organic solutes; while it enhanced with the increasing density of these solutes. The measurement of fixed charge density showed that the membrane had the maximal absolute value in water among these solvents whether for cationic or anionic groups; the difference of dielectric constant between the water and the organic solutes might be responsible for these change trends. It was confirmed that membrane potentials increased with both the increasing concentration of the organic solutions and the elevated pH values. These results demonstrated that the characteristics of the hybrid charged mosaic membrane could be highly impacted by the properties of the organic solutes. A theoretical modal for charged membranes in ternary ion systems of weak electrolyte can be used to explain the above-mentioned phenomena. 展开更多
关键词 hybrid charged mosaic membrane membrane potential equilibrium swelling degree fixed charge density organic solution
下载PDF
SLP-2: a potential new target for improving mitochondrial function in Parkinson's disease
19
作者 Alessandra Zanon Andrew A.Hicks +1 位作者 Peter P.Pramstaller Irene Pichler 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第9期1435-1436,共2页
Parkinson's disease (PD) is a progressive neurodegenerative disease, which is generally considered a multifactorial disorder that arises owing to a combination of genes and environmental factors. While most cases a... Parkinson's disease (PD) is a progressive neurodegenerative disease, which is generally considered a multifactorial disorder that arises owing to a combination of genes and environmental factors. While most cases are idiopathic, in about 10% of the patients a genetic cause can be detected, ascribable to mutations in more than a dozen genes. PD is characterized clinically by tremor, rigidity, reduced mo- tor activity (bradykinesia), and postural instability and pathological- ly by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta, loss of DA innervation in the striatum, and the presence of a-synuclein positive aggregates in the form of Lewy bodies. The symptomatic treatment of PD with levodopa, which aims at replac- ing dopamine, remains the gold standard, and no neuroprotective or disease-modifying therapy is available. During treatment, the disease continues to progress, and long-term use of levodopa has import- ant limitations including motor complications termed dyskinesias. Therefore, a pharmacological therapy able to prevent or halt the neu- rodegenerative process is urgently required. 展开更多
关键词 SLP-2 a potential new target for improving mitochondrial function in Parkinson’s disease
下载PDF
Arsenic trioxide induces multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potentials and activation of caspase-3 被引量:36
20
作者 贾培敏 陈国强 +10 位作者 黄晓君 蔡循 杨洁 王龙 周宇红 沈玉雷 周励 余韵 陈赛娟 张学光 王振义 《Chinese Medical Journal》 SCIE CAS CSCD 2001年第1期19-24,共6页
OBJECTIVE: To investigate the response of multiple myeloma (MM) cells to arsenic trioxide (As2O3) and their possible mechanisms. METHODS: Two MM-derived cell lines RPMI8226 and U266 cells were used as in vitro models.... OBJECTIVE: To investigate the response of multiple myeloma (MM) cells to arsenic trioxide (As2O3) and their possible mechanisms. METHODS: Two MM-derived cell lines RPMI8226 and U266 cells were used as in vitro models. Cell apoptosis was assessed by morphology, flow cytometry, and DNA gel electrophoresis. Mitochondrial transmembrane potentials (delta psi m) were evaluated by measuring cellular Rhodamine 123 staining intensity. Protein expression was analyzed using Western blot. RESULTS: Zero point one to 0.5 mumol/L As2O3 inhibited cell proliferation and 2.0 mumol/L As2O3 induced cell apoptosis, while 1.0 mumol/L As2O3 inhibited proliferation with a weak degree of apoptosis induction in RPMI8226 and U266 cell lines. As2O3-induced apoptosis was accompanied by mitochondrial transmembrane potentials (delta psi m) collapse and caspase-3 activation in the presence of intact membrane. Glutathione depleter buthionine sulfoximine enhanced, while disulfide bond-reducing agent dithiothreitol partially antagonized As2O3-induced delta psi m collapse and apoptosis in MM cells. All-trans retinoic acid (ATRA) could also induce apoptosis in RPMI8226 cells, but it did not show any cooperative effects with As2O3. CONCLUSION: As2O3 exerts apoptosis-inducing and growth-inhibiting effects on MM cells, and mitochondrium is a pivotal and common target of As2O3 for apoptosis induction. 展开更多
关键词 Antineoplastic Agents Apoptosis ARSENICALS Buthionine Sulfoximine CASPASES Dose-Response Relationship Drug Enzyme Activation Humans membrane potentials Mitochondria Multiple Myeloma Oxides Research Support Non-U.S. Gov't TRETINOIN Tumor Cells Cultured
原文传递
上一页 1 2 108 下一页 到第
使用帮助 返回顶部