The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicat...The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.展开更多
A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement wit...A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.展开更多
The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(...The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.展开更多
Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots o...Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.展开更多
Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. ...Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. Aims: To compare the effectiveness of a controlled-release dinoprostone vaginal delivery system for cervical dilatation (PROPESS) with that of mechanical dilation for labor induction in primiparous women with unruptured membranes. Materials and Methods: We retrospectively analyzed the data of 90 primiparas with unruptured membranes (41 and 49 in the PROPESS and mechanical dilation groups, respectively). The primary outcome was the cesarean section (CS) rate. The secondary outcomes were the prevalence of vaginal delivery within 12 or 24 h after the initial insertion, oxytocin usage rate, chorioamnionitis, additional use of mechanical dilation in the PROPESS group, and neonatal outcomes. Results: The CS rate was significantly lower in the PROPESS group than in the mechanical dilation group (p = 0.02). A total of 13 patients (31.7%) delivered within 24 h with PROPESS alone, indicating a significantly higher rate of delivery within 24 h in the PROPESS group (p = 0.02). Fewer patients required additional oxytocin in the PROPESS group than in the mechanical dilation group (p = 0.001). However, 14 (34%) patients in the PROPESS group required additional mechanical cervical dilation, resulting in a longer time to delivery than mechanical dilation. Conclusions: PROPESS significantly reduced CS rates and increased delivery rates 24 h after the initial insertion in primiparas with unruptured membranes compared to mechanical dilatation. However, failure to respond to PROPESS resulted in an overall longer delivery time than that of the conventional mechanical dilation group;therefore, identifying predictors of response to PROPESS is necessary.展开更多
Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Method...Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Methods: PubMed, the Cochrane Library, Embase, Web of Science, and other databases were searched to collect case-control or cohort studies on prognoses associated with ECMO treatment for viral pneumonia. Search terms included extracorporeal membrane oxygenation, ECMO, viral pneumonia, COVID-19, influenza, MERS, and others. According to the PICOS principle, two evaluators independently screened the literature, extracted the data, cross-checked the data, and extracted the data again. Two researchers evaluated the risk of bias in the included studies according to the Newcastle-Ottawa Scale (NOS) and cross-checked the results. Meta-analysis was performed using RevMan 5.3 software. Results: Nine studies were included for analysis, encompassing a total of 4,330 patients, which were categorized into ECMO and CMV groups. There were no significant differences between the two groups in most baseline data;however, the ECMO group had a lower oxygenation index, and some studies reported higher SOFA scores in the ECMO group compared to the CMV group. There was no significant difference in in-hospital mortality between the two groups. The length of ICU stay, total hospital stay, and total mechanical ventilation time were longer in the ECMO group than in the CMV group. In terms of adverse events, there was no significant difference in the occurrence of kidney injury between the two groups. Bleeding events were reported in two studies, with more bleeding events occurring in the ECMO group. According to the subgroup analysis of different virus types, there were no statistical differences in the above aspects among patients with swine flu, novel coronavirus, and MERS. Conclusion: ECMO has a certain degree of positive significance in the treatment of severe viral pneumonia, but there is no significant difference in the treatment outcome of ECMO across different epidemic periods. The timing of ECMO treatment, patient management, and withdrawal evaluation still need further research.展开更多
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell...Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.展开更多
Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,ene...Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.展开更多
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o...Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.展开更多
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ...Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.展开更多
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,...BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,multiple fascial spaces around the rectum could be used as the surgical plane to achieve radical resection.AIM To propose a new membrane anatomical and staging-oriented classification system for tailoring the radicality during rectal cancer surgery.METHODS A three-dimensional template of the member anatomy of the pelvis was established,and the existing anatomical nomenclatures were clarified by cadaveric dissection study and laparoscopic surgical observation.Then,we suggested a new and simple classification system for rectal cancer surgery.For simplification,the classification was based only on the lateral extent of resection.RESULTS The fascia propria of the rectum,urogenital fascia,vesicohypogastric fascia and parietal fascia lie side by side around the rectum and form three spaces(medial,middle and lateral),and blood vessels and nerves are precisely positioned in the fascia or space.Three types of radical surgery for rectal cancer are described,as are a few subtypes that consider nerve preservation.The surgical planes of the proposed radical surgeries(types A,B and C)correspond exactly to the medial,middle,and lateral spaces,respectively.CONCLUSION Three types of radical surgery can be precisely defined based on membrane anatomy,including nerve-sparing procedures.Our classification system may offer an optimal tool for tailoring rectal cancer surgery.展开更多
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(...For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.展开更多
Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research an...Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.展开更多
The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a ...The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a long time due to their limited retention time.Herein,Mem580-F-Sulfo is designed to target and anchor cell membranes and therefore track cell membranes for a longer time.This tracker is composed of a lipophilic boron-dipyrromethene(BODIPY)derivative and a hydrophilic zwitterion to form an amphiphilic structure,which enables its targeting ability toward cell membranes.Moreover,a reactive ester group is included to bind with proteins through covalent bonds in cell membranes nonspecifically,which extends retention time in cell membranes.Mem580-F-Sulfo shows intense brightness(94600),with a high molar absorption coefficient of up to about 100000 L·mol^(-1)·cm^(-1)and a fluorescence quantum yield of up to 0.97.It shows fast cell membrane targeting ability and long retention up to 90 min.In brief,this work has not only developed a tracker with good cell membrane targetability but also provided a new strategy for improving the targeting stability of cell membranes.展开更多
Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production...Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.展开更多
A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bib...A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bibenzimidazole](OPBI)sandwiched between two 20μm thick porous OPBI membranes(p-OPBI)without further lamination steps.The trilayer membrane demonstrates exceptional properties,such as high conductivity and low area-specific resistance(ASR)of 51 mS cm^(−1) and 81mΩ cm^(2),respectively.Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158mΩ cm^(2),while that of Nafion is 193mΩ cm^(2).VO^(2+) permeability is 2.73×10^(-9) cm^(2) min^(−1),about 150 times lower than that of Nafion NR212.In addition,the membrane has high mechanical strength and high chemical stability against VO^(2+).In VRFB,the combination of low resistance and low vanadium permeability results in excellent performance,revealing high Coulombic efficiency(>99%),high energy efficiency(EE;90.8% at current density of 80mA cm^(−2)),and long-term durability.The EE is one of the best reported to date.展开更多
Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying...Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.展开更多
文摘The reservoir-monolithic type of the controlled release systems is investigated currently,however,the existing kinetic model could not describe the release process well because the release kinetics is rather complicated.In this paper,a simplified release kinetic model for diffusion-controlled monolithic matrix coated with outer membrane systems is proposed and verified by the experimental data of mercaptopurinum release experiment.It shows that the model can well describe the release mechanism (the relative error is under 3%) when drug loading (C d) is above its solubility limit (C s).At the same time,the release characteristics of special cases (D mD f and D mD f) are discussed theoretically.When D mD f the release rate becomes constant,namely,zero order release,and the release rate is independent of the drug membrane.This result provides the theoretical basis for the system of zero order release as well as how to control the release rate and the amount of drug release.When D mD f,the release rate is dependent on the drug release coefficient in the monolithic matrix,solubility and drug loading but independent of the process in the outer membrane,and it is similar to monolithic matrix type.
文摘A release model for diffusion-controlled monolithic matrix coated with outer membrane system is proposed and solved by using the refined double integral method. The calculated results are in satisfactory agreement with the experimental release data. The present model can be well used to describe the release process for all cd/cs values. In addition, the release effects of the monolithic matrix coated with outer membrane system are discussed theoretically.
基金Supported by the National Natural Science Foundation of China(No90401009)the Natural Science Foundation of Shaanxi Province, China(NoSJ08B16)+1 种基金the Science Research Program of Education Department of Shaanxi Province, China (No06JK215)the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology, China (No602-210805)
文摘The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.
文摘Orthohexagonal slices assembled by ZnSe quantum dots were synthesized through emulsion liquid membrane system. These orthohexagonal slices were 1.5-3.5 μm in side length and were self-assembled by ZnSe quantum dots of 2-3 nm. It was proposed the surfactant molecules on ZnSe quantum dots played a key role in the self-assembly process.
文摘Background: Labor induction has a low success rate, especially in primiparas with unruptured membranes. Previous studies focused on pregnant women with unruptured membranes, but none specifically targeted primiparas. Aims: To compare the effectiveness of a controlled-release dinoprostone vaginal delivery system for cervical dilatation (PROPESS) with that of mechanical dilation for labor induction in primiparous women with unruptured membranes. Materials and Methods: We retrospectively analyzed the data of 90 primiparas with unruptured membranes (41 and 49 in the PROPESS and mechanical dilation groups, respectively). The primary outcome was the cesarean section (CS) rate. The secondary outcomes were the prevalence of vaginal delivery within 12 or 24 h after the initial insertion, oxytocin usage rate, chorioamnionitis, additional use of mechanical dilation in the PROPESS group, and neonatal outcomes. Results: The CS rate was significantly lower in the PROPESS group than in the mechanical dilation group (p = 0.02). A total of 13 patients (31.7%) delivered within 24 h with PROPESS alone, indicating a significantly higher rate of delivery within 24 h in the PROPESS group (p = 0.02). Fewer patients required additional oxytocin in the PROPESS group than in the mechanical dilation group (p = 0.001). However, 14 (34%) patients in the PROPESS group required additional mechanical cervical dilation, resulting in a longer time to delivery than mechanical dilation. Conclusions: PROPESS significantly reduced CS rates and increased delivery rates 24 h after the initial insertion in primiparas with unruptured membranes compared to mechanical dilatation. However, failure to respond to PROPESS resulted in an overall longer delivery time than that of the conventional mechanical dilation group;therefore, identifying predictors of response to PROPESS is necessary.
文摘Objective: To compare the effects of extracorporeal membrane oxygenation (ECMO) and routine mechanical ventilation on mortality and the risk of associated adverse events in patients with severe viral pneumonia. Methods: PubMed, the Cochrane Library, Embase, Web of Science, and other databases were searched to collect case-control or cohort studies on prognoses associated with ECMO treatment for viral pneumonia. Search terms included extracorporeal membrane oxygenation, ECMO, viral pneumonia, COVID-19, influenza, MERS, and others. According to the PICOS principle, two evaluators independently screened the literature, extracted the data, cross-checked the data, and extracted the data again. Two researchers evaluated the risk of bias in the included studies according to the Newcastle-Ottawa Scale (NOS) and cross-checked the results. Meta-analysis was performed using RevMan 5.3 software. Results: Nine studies were included for analysis, encompassing a total of 4,330 patients, which were categorized into ECMO and CMV groups. There were no significant differences between the two groups in most baseline data;however, the ECMO group had a lower oxygenation index, and some studies reported higher SOFA scores in the ECMO group compared to the CMV group. There was no significant difference in in-hospital mortality between the two groups. The length of ICU stay, total hospital stay, and total mechanical ventilation time were longer in the ECMO group than in the CMV group. In terms of adverse events, there was no significant difference in the occurrence of kidney injury between the two groups. Bleeding events were reported in two studies, with more bleeding events occurring in the ECMO group. According to the subgroup analysis of different virus types, there were no statistical differences in the above aspects among patients with swine flu, novel coronavirus, and MERS. Conclusion: ECMO has a certain degree of positive significance in the treatment of severe viral pneumonia, but there is no significant difference in the treatment outcome of ECMO across different epidemic periods. The timing of ECMO treatment, patient management, and withdrawal evaluation still need further research.
基金supported by the National Natural Science Foundation of China,Nos.81974207(to JH),82001383(to DW)the Special Clinical Research Project of Health Profession of Shanghai Municipal Health Commission,No.20204Y0076(to DW)。
文摘Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor(VEGFA/b FGF)expression in the penumbra of cerebral ischemia can increase vascular volume,reduce lesion volume,and enhance neural cell proliferation and differentiation,thereby exerting neuroprotective effects.However,the beneficial effects of endogenous VEGFA/b FGF are limited as their expression is only transiently increased.In this study,we generated multilayered nanofiber membranes loaded with VEGFA/b FGF using layer-by-layer self-assembly and electrospinning techniques.We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month.This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation,inhibited neuronal apoptosis,upregulated the expression of tight junction proteins,and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation.Furthermore,this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3(JAK2/STAT3),Bax/Bcl-2,and cleaved caspase-3.Therefore,this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
基金National Natural Science Foundation of China,Grant/Award Number:52175174China Postdoctoral Science Foundation,Grant/Award Number:2022M721791National Key Research and Development Program of China,Grant/Award Number:2020YFA0711003。
文摘Nanofluidic channels inspired by electric eels open a new era of efficient harvesting of clean blue osmotic energy from salinity gradients.Limited by less charge and weak ion selectivity of the raw material itself,energy conversion through nanofluidic channels is still facing considerable challenges.Here,a facile and efficient strategy to enhance osmotic energy harvesting based on drastically increasing surface charge density of MXenes subnanochannels via oxygen plasma is proposed.This plasma could break Ti–C bonds in the MXenes subnanochannels and effectively facilitate the formation of more Ti–O,C═O,O–OH,and rutile with a stronger negative charge and work function,which leads the surface potential of MXenes membrane to increase from 205 to 430 mV.This significant rise of surface charge endows the MXenes membrane with high cation selectivity,which could make the output power density of the MXenes membrane increase by 248.2%,reaching a high value of 5.92Wm^(−2) in the artificial sea‐river water system.Furthermore,with the assistance of low‐quality heat at 50℃,the osmotic power is enhanced to an ultrahigh value of 9.68Wm^(−2),which outperforms those of the state‐of‐the‐art two‐dimensional(2D)nanochannel membranes.This exciting breakthrough demonstrates the enormous potential of the facile plasma‐treated 2D membranes for osmotic energy harvesting.
基金supported by fund from the National Natural Science Foundation of China(32172322)。
文摘Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1605000)National Natural Science Foundation of China(Grant No.31871806)the Beijing Livestock Industry Innovation Team(BAIC05-2023)。
文摘Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA.
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.
基金the National Natural Science Foundation of China,No.81874201Technology Plan Project,No.20Y11908300+2 种基金Shanghai Medical Key Specialty Construction Plan,No.ZK2019A19Shanghai Municipal Commission of Health and Family Planning,No.202040122and Shanghai Pujiang Program,No.21PJD066.
文摘BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,multiple fascial spaces around the rectum could be used as the surgical plane to achieve radical resection.AIM To propose a new membrane anatomical and staging-oriented classification system for tailoring the radicality during rectal cancer surgery.METHODS A three-dimensional template of the member anatomy of the pelvis was established,and the existing anatomical nomenclatures were clarified by cadaveric dissection study and laparoscopic surgical observation.Then,we suggested a new and simple classification system for rectal cancer surgery.For simplification,the classification was based only on the lateral extent of resection.RESULTS The fascia propria of the rectum,urogenital fascia,vesicohypogastric fascia and parietal fascia lie side by side around the rectum and form three spaces(medial,middle and lateral),and blood vessels and nerves are precisely positioned in the fascia or space.Three types of radical surgery for rectal cancer are described,as are a few subtypes that consider nerve preservation.The surgical planes of the proposed radical surgeries(types A,B and C)correspond exactly to the medial,middle,and lateral spaces,respectively.CONCLUSION Three types of radical surgery can be precisely defined based on membrane anatomy,including nerve-sparing procedures.Our classification system may offer an optimal tool for tailoring rectal cancer surgery.
基金financially supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB530007,22KJA530001)National Natural Science Foundation of China(22208151)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220002)the State Key Laboratory of MaterialsOriented Chemical Engineering(SKL-MCE-22B07).
文摘For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.
基金This work is supported by the National Key R&D Program of China(No.2022ZD0117501)the Singapore RIE2020 Advanced Manufacturing and Engineering Programmatic Grant by the Agency for Science,Technology and Research(A*STAR)under grant no.A1898b0043Tsinghua University Initiative Scientific Research Program and Low Carbon En-ergy Research Funding Initiative by A*STAR under grant number A-8000182-00-00.
文摘Membrane technologies are becoming increasingly versatile and helpful today for sustainable development.Machine Learning(ML),an essential branch of artificial intelligence(AI),has substantially impacted the research and development norm of new materials for energy and environment.This review provides an overview and perspectives on ML methodologies and their applications in membrane design and dis-covery.A brief overview of membrane technologies isfirst provided with the current bottlenecks and potential solutions.Through an appli-cations-based perspective of AI-aided membrane design and discovery,we further show how ML strategies are applied to the membrane discovery cycle(including membrane material design,membrane application,membrane process design,and knowledge extraction),in various membrane systems,ranging from gas,liquid,and fuel cell separation membranes.Furthermore,the best practices of integrating ML methods and specific application targets in membrane design and discovery are presented with an ideal paradigm proposed.The challenges to be addressed and prospects of AI applications in membrane discovery are also highlighted in the end.
基金supported by the National Natural Science Foundation of China(22278059,22174009,and 22078047)Fundamental Research Funds for the Central Universities(DUT22LAB601 and DUT22LAB608)。
文摘The construction of a stable-membrane tracker has significant implications for the visualization of the membrane in live cells.However,most current plasma trackers are not suitable for tracking plasma membranes for a long time due to their limited retention time.Herein,Mem580-F-Sulfo is designed to target and anchor cell membranes and therefore track cell membranes for a longer time.This tracker is composed of a lipophilic boron-dipyrromethene(BODIPY)derivative and a hydrophilic zwitterion to form an amphiphilic structure,which enables its targeting ability toward cell membranes.Moreover,a reactive ester group is included to bind with proteins through covalent bonds in cell membranes nonspecifically,which extends retention time in cell membranes.Mem580-F-Sulfo shows intense brightness(94600),with a high molar absorption coefficient of up to about 100000 L·mol^(-1)·cm^(-1)and a fluorescence quantum yield of up to 0.97.It shows fast cell membrane targeting ability and long retention up to 90 min.In brief,this work has not only developed a tracker with good cell membrane targetability but also provided a new strategy for improving the targeting stability of cell membranes.
基金Financial support by the Spanish Ministry of Science(PID2022139663OB-I00 and CEX2021-001230-S grant funded by MCIN/AE I/10.13039/501100011033)with funding from Next Generation EU(PRTR-C17.I1)within the Planes Complementarios con CCAA(Area of Green Hydrogen and Energy)+2 种基金carried out in the CSIC Interdisciplinary Thematic Platform(PTI+)Transición Energética Sostenible+(PTI-TRANSENER+)the Universitat Politècnica de València(UPV)the support of the Servicio de Microscopía Elcectronica of the UPV。
文摘Industry decarbonization requires the development of highly efficient and flexible technologies relying on renewable energy resources,especially biomass and solar/wind electricity.In the case of pure oxygen production,oxygen transport membranes(OTMs)appear as an alternative technology for the cryogenic distillation of air,the industrially-established process of producing oxygen.Moreover,OTMs could provide oxygen from different sources(air,water,CO_(2),etc.),and they are more flexible in adapting to current processes,producing oxygen at 700^(-1)000℃.Furthermore,OTMs can be integrated into catalytic membrane reactors,providing new pathways for different processes.The first part of this study was focused on electrification on a traditional OTM material(Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_(3-δ)),imposing different electric currents/voltages along a capillary membrane.Thanks to the emerging Joule effect,the membrane-surface temperature and the associated O_(2) permeation flux could be adjusted.Here,the OTM is electrically and locally heated and reaches 900℃on the surface,whereas the surrounding of the membrane was maintained at 650℃.The O_(2)permeation flux reached for the electrified membranes was~3.7 NmL min^(-1)cm^(-2),corresponding to the flux obtained with an OTM non-electrified at 900℃.The influence of depositing a porous Ce_(0.8)Tb_(0.2)O_(2-δ) catalytic/protective layer on the outer membrane surface revealed that lower surface temperatures(830℃)were detected at the same imposed electric power.Finally,the electrification concept was demonstrated in a catalytic membrane reactor(CMR)where the oxidative dehydrogenation of ethane(ODHE)was carried out.ODHE reaction is very sensitive to temperature,and here,we demonstrate an improvement of the ethylene yield by reaching moderate temperatures in the reaction chamber while the O_(2) injection into the reaction can be easily fine-tuned.
基金supported by KIST (2E31871 and 2E32591)and Innovation Fund Denmark Denmark (DANFLOW—project#9090-00059)Korea Institute for Advancement of Technology (KIAT)through the International Cooperative R&D program (Project No.P0018437)Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (2021R1A6A1A03039981).
文摘A novel polybenzimidazole(PBI)-based trilayer membrane assembly is developed for application in vanadium redox flow battery(VRFB).The membrane comprises a 1μm thin cross-linked poly[2,2′-(p-oxydiphenylene)−5,5′-bibenzimidazole](OPBI)sandwiched between two 20μm thick porous OPBI membranes(p-OPBI)without further lamination steps.The trilayer membrane demonstrates exceptional properties,such as high conductivity and low area-specific resistance(ASR)of 51 mS cm^(−1) and 81mΩ cm^(2),respectively.Contact with vanadium electrolyte increases the ASR of trilayer membrane only to 158mΩ cm^(2),while that of Nafion is 193mΩ cm^(2).VO^(2+) permeability is 2.73×10^(-9) cm^(2) min^(−1),about 150 times lower than that of Nafion NR212.In addition,the membrane has high mechanical strength and high chemical stability against VO^(2+).In VRFB,the combination of low resistance and low vanadium permeability results in excellent performance,revealing high Coulombic efficiency(>99%),high energy efficiency(EE;90.8% at current density of 80mA cm^(−2)),and long-term durability.The EE is one of the best reported to date.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274307,32230063,21774092,and 12347102)the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2023A1515011610).
文摘Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.