Different aspects of micropropagation through meristem culture for the production of virus indexed source plants, <i><span style="font-family:Verdana;">in vitro</span></i><span sty...Different aspects of micropropagation through meristem culture for the production of virus indexed source plants, <i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> tuberization and field evaluation of the </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> regenerated plants were studied on four commercial cultivars of potato (</span><i><span style="font-family:Verdana;">Solanum tuberosum</span></i><span style="font-family:Verdana;"> L.) viz., Diamant, Cardinal, Shilbilati and Lalpakri. The investigation was conducted at Rajshahi, Bangladesh from December 2010 to March 2012 to produce virus-free potato plantlets through meristem culture, shoot multiplications with root induction as well as their acclimatization and evaluation of morphological characters and tuber yield under field condition. Shoot tips of 25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30 day old field</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">grown plants of above mentioned four cultivars were used for meristem isolation. After isolation, meristems of these varieties of potato were cultured on “M” shaped filter paper bridge in Murashige and Skoog (MS) liquid medium. Four different treatments of media formulations viz. 0.1 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 0.1</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 0.5 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and 0.5 mg/L KI</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">N + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> were used as plant growth regulators. From these formulations MS + 0.1 mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was found to be the best for </span></span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">primary establishment of meristem culture. The primar</span><span style="font-family:Verdana;">ily</span><span style="font-family:Verdana;"> established meristems were subcultured on to MS semisolid basal medium supplemented with four different treatment combinations of hormones viz. 0.5 mg/L BA</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+ 1.0 mg/L IBA;0.1 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">;0.5 mg/L BA + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and 0.5 mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> were used to identify the suitable media compositions for shoot proliferation. Results showed that out of these four media treatments the formulation 0.5 mg/L BA + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was found to be the best suitable for shoot generation. Among the four cultivars of potato higher frequency of shoot proliferation (number of shoots/explant and longest shoot length) was observed in Diamant, though the highest shoot formation (76%) was recorded in Cardinal. Virus free </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> grown potato plantlets were ob</span><span style="font-family:Verdana;">tained through DAS-ELISA test and used substantially for m</span><span style="font-family:Verdana;">icro-propagation. After gradual acclimatization of rooted plantlets of four potato cultivars</span></span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> they were transferred into the field for cultivation and established successfully. It was observed from the field study of </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> meristem-derived plantlets that there were no virus-affected plants. The virus-free exotic varieties were much superior in all vegetative attributes and yield compare</span></span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> to those of indigenous varieties with producing potato plants of normal height. In contrast, the indigenous varieties took </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">longer time to tuber initiation and maturity, lower plant height and number of leaves per plant, </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">higher number of tubers but </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">lower amount of tuber weight per plant, and poorer tuber grade than the exotic varieties. However, the variety Cardinal exposed the best performances in the context of survival percentage of plantlets (90%), days to tuber initiation (DTI), </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">number of leaves per plant (NL), tuber weight per plant (343.40%) and the percentage of rich tuber grade.</span>展开更多
Endophytic bacteria may influence agricultural production in several ways, including promoting plant growth. Two experiments were conducted in order to evaluate the combination of endophytic bacteria from the Brazilia...Endophytic bacteria may influence agricultural production in several ways, including promoting plant growth. Two experiments were conducted in order to evaluate the combination of endophytic bacteria from the Brazilian Northeast region aims at the commercial introduction of the inoculation of these bacteria in micropropagated sugarcane plants using a temporary immersion bioreactor. One experiment was done in tubes with sterile commercial substrate, and the other was done in pots with soil;both were installed in a greenhouse. A mixed inoculation was performed in six inoculated endophytic diazotrophic bacteria in micropropagated sugarcane plants, variety RB92579. In the experiment with soil, the mixed inoculation significantly increased the shoot dry matter of plants without the addition of nitrogen fertilizer. However, the accumulation of total-N in the tissues showed no significant differences between treatments with and without nitrogen fertilization. The evaluation of micropropagated seedlings showed no increases in the parameters tested. The results showed that the response of inoculation in temporary immersion bioreactor micropropagation is possible, and that the application of homologous strains may have contributed to a better response by the interaction of endophytic bacteria with sugarcane RB92579. Further studies should be conducted to improve the methodology, which indicates a great potential to optimize this process on a commercial scale.展开更多
文摘Different aspects of micropropagation through meristem culture for the production of virus indexed source plants, <i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> tuberization and field evaluation of the </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> regenerated plants were studied on four commercial cultivars of potato (</span><i><span style="font-family:Verdana;">Solanum tuberosum</span></i><span style="font-family:Verdana;"> L.) viz., Diamant, Cardinal, Shilbilati and Lalpakri. The investigation was conducted at Rajshahi, Bangladesh from December 2010 to March 2012 to produce virus-free potato plantlets through meristem culture, shoot multiplications with root induction as well as their acclimatization and evaluation of morphological characters and tuber yield under field condition. Shoot tips of 25</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">30 day old field</span><span style="font-family:Verdana;">-</span><span style="font-family:;" "=""><span style="font-family:Verdana;">grown plants of above mentioned four cultivars were used for meristem isolation. After isolation, meristems of these varieties of potato were cultured on “M” shaped filter paper bridge in Murashige and Skoog (MS) liquid medium. Four different treatments of media formulations viz. 0.1 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 0.1</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 0.5 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and 0.5 mg/L KI</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">N + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> were used as plant growth regulators. From these formulations MS + 0.1 mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was found to be the best for </span></span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">primary establishment of meristem culture. The primar</span><span style="font-family:Verdana;">ily</span><span style="font-family:Verdana;"> established meristems were subcultured on to MS semisolid basal medium supplemented with four different treatment combinations of hormones viz. 0.5 mg/L BA</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">+ 1.0 mg/L IBA;0.1 mg/L KIN + 0.1 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">;0.5 mg/L BA + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> and 0.5 mg/L KIN + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> were used to identify the suitable media compositions for shoot proliferation. Results showed that out of these four media treatments the formulation 0.5 mg/L BA + 0.5 mg/L GA</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> was found to be the best suitable for shoot generation. Among the four cultivars of potato higher frequency of shoot proliferation (number of shoots/explant and longest shoot length) was observed in Diamant, though the highest shoot formation (76%) was recorded in Cardinal. Virus free </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> grown potato plantlets were ob</span><span style="font-family:Verdana;">tained through DAS-ELISA test and used substantially for m</span><span style="font-family:Verdana;">icro-propagation. After gradual acclimatization of rooted plantlets of four potato cultivars</span></span><span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> they were transferred into the field for cultivation and established successfully. It was observed from the field study of </span><i><span style="font-family:Verdana;">in vitro</span></i><span style="font-family:Verdana;"> meristem-derived plantlets that there were no virus-affected plants. The virus-free exotic varieties were much superior in all vegetative attributes and yield compare</span></span><span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> to those of indigenous varieties with producing potato plants of normal height. In contrast, the indigenous varieties took </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">longer time to tuber initiation and maturity, lower plant height and number of leaves per plant, </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">higher number of tubers but </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">lower amount of tuber weight per plant, and poorer tuber grade than the exotic varieties. However, the variety Cardinal exposed the best performances in the context of survival percentage of plantlets (90%), days to tuber initiation (DTI), </span><span style="font-family:Verdana;">a </span><span style="font-family:Verdana;">number of leaves per plant (NL), tuber weight per plant (343.40%) and the percentage of rich tuber grade.</span>
基金Funding:This work was supported by the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq grant number 310030/2015-3)and MCSB obtained a scholarship from Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES).
文摘Endophytic bacteria may influence agricultural production in several ways, including promoting plant growth. Two experiments were conducted in order to evaluate the combination of endophytic bacteria from the Brazilian Northeast region aims at the commercial introduction of the inoculation of these bacteria in micropropagated sugarcane plants using a temporary immersion bioreactor. One experiment was done in tubes with sterile commercial substrate, and the other was done in pots with soil;both were installed in a greenhouse. A mixed inoculation was performed in six inoculated endophytic diazotrophic bacteria in micropropagated sugarcane plants, variety RB92579. In the experiment with soil, the mixed inoculation significantly increased the shoot dry matter of plants without the addition of nitrogen fertilizer. However, the accumulation of total-N in the tissues showed no significant differences between treatments with and without nitrogen fertilization. The evaluation of micropropagated seedlings showed no increases in the parameters tested. The results showed that the response of inoculation in temporary immersion bioreactor micropropagation is possible, and that the application of homologous strains may have contributed to a better response by the interaction of endophytic bacteria with sugarcane RB92579. Further studies should be conducted to improve the methodology, which indicates a great potential to optimize this process on a commercial scale.