A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, ...A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, a merit function method for solving nonlinear complementarity problem is investigated, and the global convergence of the proposed algorithm is proved under some standard assumptions. Some preliminary numerical results are given.展开更多
Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal...Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved.展开更多
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve...This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.展开更多
A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which i...A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.展开更多
In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local ...In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.展开更多
Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in ...Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in the linear response regime using Green's function formalism. We used thiol-terminated(–SH bond) benzene units and found a positive thermopower because the highest occupied molecular orbital(HOMO) is near the Fermi energy level. We investigated the influence of molecular length and molecular junction geometry on the thermoelectric properties. Our results show that the thermoelectric properties are highly sensitive to the coupling geometry and the molecular length. In addition, we observed that the interference effects and increasing molecular length can increase the thermoelectric efficiency of device in a specific configuration.展开更多
The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods a...The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.展开更多
This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimizat...This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.展开更多
基金Supported by the National Natural Science Foundation of China(10871144)the Natural Science Foundation of Tianjin(07JCYBJC05200)
文摘A family of merit functions are proposed, which are the generalization of several existing merit functions. A number of favorable properties of the proposed merit functions are established. By using these properties, a merit function method for solving nonlinear complementarity problem is investigated, and the global convergence of the proposed algorithm is proved under some standard assumptions. Some preliminary numerical results are given.
基金Supported by the National Science foundation of China(10671126, 40771095)the Key Project for Fundamental Research of STCSM(06JC14057)+1 种基金Shanghai Leading Academic Discipline Project(S30501)the Innovation Fund Project for Graduate Students of Shanghai(JWCXSL0801)
文摘Under some assumptions, the solution set of a nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. This paper uses a family of new merit functions to deal with nonlinear complementarity problem where the underlying function is assumed to be a continuous but not necessarily locally Lipschitzian map and gives a descent algorithm for solving the nonsmooth continuous complementarity problems. In addition, the global convergence of the derivative free descent algorithm is also proved.
基金the National Science and Tech-nology Council,Taiwan for their financial support(Grant Number NSTC 111-2221-E-019-048).
文摘This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency.
文摘A kind of direct methods is presented for the solution of optimal control problems with state constraints. These methods are sequential quadratic programming methods. At every iteration a quadratic programming which is obtained by quadratic approximation to Lagrangian function and linear approximations to constraints is solved to get a search direction for a merit function. The merit function is formulated by augmenting the Lagrangian function with a penalty term. A line search is carried out along the search direction to determine a step length such that the merit function is decreased. The methods presented in this paper include continuous sequential quadratic programming methods and discreate sequential quadratic programming methods.
文摘In this paper, we propose a primal-dual interior point method for solving general constrained nonlinear programming problems. To avoid the situation that the algorithm we use may converge to a saddle point or a local maximum, we utilize a merit function to guide the iterates toward a local minimum. Especially, we add the parameter ε to the Newton system when calculating the decrease directions. The global convergence is achieved by the decrease of a merit function. Furthermore, the numerical results confirm that the algorithm can solve this kind of problems in an efficient way.
文摘Thermal and electron transport through organic molecules attached to three-dimensional gold electrodes in two different configurations, namely para and meta with thiol-terminated junctions is studied theoretically in the linear response regime using Green's function formalism. We used thiol-terminated(–SH bond) benzene units and found a positive thermopower because the highest occupied molecular orbital(HOMO) is near the Fermi energy level. We investigated the influence of molecular length and molecular junction geometry on the thermoelectric properties. Our results show that the thermoelectric properties are highly sensitive to the coupling geometry and the molecular length. In addition, we observed that the interference effects and increasing molecular length can increase the thermoelectric efficiency of device in a specific configuration.
基金Supported by Science and Technology Foundation of Shanghai Higher Education
文摘The secant methods discussed by Fontecilla (in 1988) are considerably revised through employing a trust region multiplier strategy and introducing a nondifferentiable merit function. In this paper the secant methods are also improved by adding a dogleg typed movement which allows to overcome a phenomena similar to the Maratos effect. Furthermore, these algorithms are analyzed and global convergence theorems as well as local superlinear convergence rate are proved.
基金financial support from Council of Scientific and Industrial Research,India through a research fellowship(File No.09/1217(0025)/2017-EMR-I)to carry out this research workDebdas Ghosh acknowledges the research grant(MTR/2021/000696)from SERB,India to carry out this research work.
文摘This paper proposes an interior-point technique for detecting the nondominated points of multi-objective optimization problems using the direction-based cone method.Cone method decomposes the multi-objective optimization problems into a set of single-objective optimization problems.For this set of problems,parametric perturbed KKT conditions are derived.Subsequently,an interior point technique is developed to solve the parametric perturbed KKT conditions.A differentiable merit function is also proposed whose stationary point satisfies the KKT conditions.Under some mild assumptions,the proposed algorithm is shown to be globally convergent.Numerical results of unconstrained and constrained multi-objective optimization test problems are presented.Also,three performance metrics(modified generational distance,hypervolume,inverted generational distance)are used on some test problems to investigate the efficiency of the proposed algorithm.We also compare the results of the proposed algorithm with the results of some other existing popular methods.