Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycni...Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.展开更多
A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has bee...A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has been isolated from aecial infections on B. vulgaris, the population is too diverse to be explained by the limited presence of B. vulgaris alone. Since 2008, we have isolated P. graminis from aecial infections on fruits of Mahonia repens and Mahonia aquifolium from northwestern United States. These two native woody shrub species, widely distributed in western North America, were once classified as resistant to P. graminis based on artificial inoculations. By isolating P. graminis from aecia, we established that M. repens and M. aquifolium along with B. vulgaris (albeit infrequent) serve as the alternate hosts ofP. graminis in the region. The isolates of P. graminis from Mahonia of North America had diverse virulence patterns and most of the isolates could be differentiated on Morocco, Line E, Chinese Spring, Little Club, LMPG-6, Rusty, and other genotypes that are considered to be universally susceptible to most Pgt isolates. This discovery explained the persistence of virulence diversity of Pgt observed in isolates derived from uredinia on cereal crops in the region. In addition to cereal crops, uredinial stage of the P. graminis population is sustained by wild grasses, especially Elymus glaucus, a native grass sharing the same habitat with the rusted Mahonia spp. Although virulence to some important stem rust resistance genes was observed in some isolates derived from Mahonia of North America when tested against single stem rust resistance gene stocks, the overall virulence is very limited in these isolates. This is likely a result of limited selection pressure on the rust population. In contrast to northwestern United Sates, the Pgt population in east of the Rocky Mountains of North America has declined steadily with a single race, QFCSC, being predominant in the last decade. This decline is likely due to a combination of factors, of which a lack of sexual recombination in the region is perhaps the most important one.展开更多
基金the National Key R&D Program of China(2018YFD0200500)the National Natural Science Foundation of China(31960524,31071641 and 32072358)+1 种基金the Fundamental Research Funds for the Central Universities(2452019046)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JZ-15,2017JM3006)。
文摘Puccinia striiformis Westend.f.sp.tritici Erikss.(Pst)infects wheat and causes stripe rust.The rust is heteroecious with wheat as the primary uredinial and telial host and barberry(Berberis spp.)as the alternate pycnial and aecial host.More than 40 Berberis species have been identified as alternate hosts for Pst,and most of these are Chinese Berberis species.However,little is known about Berberis species or their geographic distributions in the Yunnan-Guizhou plateau in southwestern China.The Yunnan-Guizhou plateau is considered to be an important and relatively independent region for the evolution of the wheat stripe rust pathogen in China because the entire disease cycle can be completed within the region.In this study,we conducted a survey of barberry plants in the Yunnan-Guizhou plateau and identified the eight Pst-susceptible Berberis species under controlled conditions,including B.julianae,B.tsienii,B.veitchii,B.wilsonae,B.wilsonae var.guhtzunica,B.franchetiana,B.lepidifolia and B.pruinosa.These species are reported here for the first time to serve as alternate hosts for the wheat stripe rust pathogen under controlled conditions.
文摘A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has been isolated from aecial infections on B. vulgaris, the population is too diverse to be explained by the limited presence of B. vulgaris alone. Since 2008, we have isolated P. graminis from aecial infections on fruits of Mahonia repens and Mahonia aquifolium from northwestern United States. These two native woody shrub species, widely distributed in western North America, were once classified as resistant to P. graminis based on artificial inoculations. By isolating P. graminis from aecia, we established that M. repens and M. aquifolium along with B. vulgaris (albeit infrequent) serve as the alternate hosts ofP. graminis in the region. The isolates of P. graminis from Mahonia of North America had diverse virulence patterns and most of the isolates could be differentiated on Morocco, Line E, Chinese Spring, Little Club, LMPG-6, Rusty, and other genotypes that are considered to be universally susceptible to most Pgt isolates. This discovery explained the persistence of virulence diversity of Pgt observed in isolates derived from uredinia on cereal crops in the region. In addition to cereal crops, uredinial stage of the P. graminis population is sustained by wild grasses, especially Elymus glaucus, a native grass sharing the same habitat with the rusted Mahonia spp. Although virulence to some important stem rust resistance genes was observed in some isolates derived from Mahonia of North America when tested against single stem rust resistance gene stocks, the overall virulence is very limited in these isolates. This is likely a result of limited selection pressure on the rust population. In contrast to northwestern United Sates, the Pgt population in east of the Rocky Mountains of North America has declined steadily with a single race, QFCSC, being predominant in the last decade. This decline is likely due to a combination of factors, of which a lack of sexual recombination in the region is perhaps the most important one.