? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in t...? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in the basins, and reveals a basic framework of the geothermal regime of the basins. The geothermal regime of Meso-Cenozioc basins in East China is mainly dominated by tectonic conditions. The important factor determining the geothermal state of basins is the thickness of lithosphere—burial depth of asthenospheric top, which is related to geodynamic type of basins. Basins in the western zone, represented by Sichuan and Ordos, belong to the flexure basins on the basement of continental block, with thick lithosphere, generally 120-150 km. All basins in this zone fall into middle heat basin type in the light of their lower ancient and present geotemperature gradient. While the middle zone is represented by Songliao and Bohaiwan basins, the continental margin zone is represented by East China Sea shelf basin and northern continental shelf basins of South China Sea. They belong to the extensional basins with thinning lithosphere, the smallest burial depth of paleoasthenospheric top, being 55-60 km. Therefore they should belong to heat basin type. The geothermal state of the basins is correlated positively with extension degree in the majority of basins controlled by dynamic mechanism of extension and transtension.展开更多
A regional study connecting geolelectrical surveys with geology and hydrogeology was carried out in the western part of the Iullemmeden basin, precisely in the Dosso region in Niger. One hundred and four (104) vertica...A regional study connecting geolelectrical surveys with geology and hydrogeology was carried out in the western part of the Iullemmeden basin, precisely in the Dosso region in Niger. One hundred and four (104) vertical electrical sounds have been realized, among them nineteen representative were thus be used as parametric surveys. The local resistivity values of the geological formations of Quaternary range from 100 Ω⋅m to 1000 Ω⋅m (sands and lateritic sandstones). The Oligo-Miocene formation of the Continental terminal (Ct) shows resistivity values ranging from 1 to 5 Ω⋅m (brackish groundwaters) to 1500 Ω⋅m (clay sandstones) while the Upper Cretaceous formation of the Continental “hamadien” (Ch) indicates values ranging from 20 Ω⋅m (sandy clay) to 5000 Ω⋅m (clayey sandstones). The geological formations of Paleocene have values from 2 Ω⋅m (marls) to 60 Ω⋅m (calcareous marl), while the Precambrian basement exhibits values of granite around 300 Ω⋅m to 60,000 Ω⋅m. The update of the structural settings reveals many faults in the study area which explain both the shape of the basin and the geometry of the aquifers. Tectonics is also consistent with the hydraulic characteristics of aquifers. In addition, brackish groundwaters were identified as perched aquifer groundwaters in different depths in Dosso region. They probably come from the marine brines during the regression of the Paleocene Sea.展开更多
Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow...Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow Sea basin. As shown by studies of the structural types, sedimentary formations, volcanic activities, tectonic evolution as well as the time-space relationship between the Tanlu fault zone and the basins, the formation and distribution of the basins are controlled by the movement of the Tanlu fault. This paper presents an analysis of the tectono-geometric, kinematic and geodynamic features of the basins on the basis of integrated geological-geophysical data, and an exploration into the internal relations between the fault and the basins as well as the formation mechanism and geodynamic processes of the basins.展开更多
?The unequal spacetime distribution of the source rocks resulted from the mutual superimposition of the biota evolution, basin type, and paleoclimatic change. The basin type is the most important in controlling the di...?The unequal spacetime distribution of the source rocks resulted from the mutual superimposition of the biota evolution, basin type, and paleoclimatic change. The basin type is the most important in controlling the distribution of source rocks. The effect of the paleoclimate on the source rocks varied with different basins. In the rift basin, the source rocks were accumulated in the humid, semihumid and semiarid climates; however, in the flexural basin, only in the humid and semihumid climates. The biota features may control, to a great extent, the distribution pattern and the sourcerock quality. The abundance of the terrestrial flora and lacustrine phytoplankton was essential for the generation of the Meso-Cenozoic source rocks on a large scale.展开更多
In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usu...In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic-early Lower Cretaceous Taebo System, and the Upper Cretaceous-Paleocene ( Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e. g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-beating beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.展开更多
The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of ig...The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of igneous rocks. We preliminarily defined the coupling relation between magnetic anomalies and igneous rock bodies. Some igneous complexes were also recognized by using multi-channel seismic and drilling data. We identified various intrusive and extrusive igneous rock bodies, such as stocks, sills, dikes, laccoliths and volcanic edifice relics through seismic facies analysis. We also forecasted the distribution characteristics of igneous complexes. More than fifty hypabyssal intrusions and volcanic relics were delineated based on the interpretation of magnetic anomaly and dense intersecting multi-channel seismic data. It is an important supplement to regional geology and basin evolution research. Spatial matching relations between igneous rock belts and fractures document that extensional N-E and N-NE-trending deep fractures may be effective pathways for magma intrusion. These fractures formed under the influence of regional extension during the Meso- Cenozoic after the Indosinian movement. Isotopic ages and crosscutting relations between igneous rock bodies and the surrounding bedded sedimentary strata both indicate that igneous activities might have initiated during the Late Jurassic, peaked in the Early Cretaceous, gradually weakened in the Late Cretaceous, and continued until the Miocene. Combined with previous studies, it is considered that the Meso-Cenozoic igneous activities, especially the intensive igneous activity of the Early Cretaceous, are closely associated with the subduction of the Paleo-Pacific Plate.展开更多
The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigat...The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigations of its Mesozoic and Cenozoic lithospheric thermal structure are limited. Therefore, in this study,the distributions of mantle heat flow, crustal heat flow, and Moho temperatures during the Meso-Cenozoic are calculated based on analyses of the thermal history of the Bohai Bay Basin. The results indicate that the ratio of mantle heat flow to surface heat flow peaked during the late stages of the early Cretaceous and during the middle to late Paleogene. The corresponding mantle heat flow was more than 65% of the surface heat flow. Moho temperatures reached three peaks: 900-1100℃ in the late stages of the early Cretaceous;820-900℃ in the middle to late Paleogene; and(in the Linqing Depression, Cangxian Uplift, and Jizhong Depression) 770-810℃ during the early Neogene. These results reveal that the Bohai Bay Basin experienced significant geological change during the Cretaceous, including the transformation of lithospheric thermal structure from "cold mantle and hot crust" before the Cretaceous to "hot mantle and cold crust" after the Cretaceous. The results also indicate that the basin experienced two large-scale rifting events.Therefore, this work may provide the thermal parameters for further investigations of the geodynamic evolution of eastern China.展开更多
Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on sur...Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.展开更多
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ...The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.展开更多
By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and develop...By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.展开更多
Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental fac...Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.展开更多
The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of...At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.展开更多
In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, ...In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, the morphology of the studied area corresponds to a vast plateau (hamada) presenting occasional major reliefs. For this purpose, remote sensing approach has been applied to find the best approaches for truthful lithological mapping. The two supervised classification methods by machine learning (Artificial Neural Network and Spectral Information Divergence) have been evaluated for a most accurate classification to be used for our lithofacies mapping. The latest geological maps and RGB images were used for pseudo-color groups to identify important areas and collect the ROIs that will serve as facilities samples for the classifications. The results obtained showed a clear distinction between the various formation units, and very close results to the field reality in the ANN classification of the studied area. Thus, the ANN method is more accurate with an overall accuracy of 92.56% and a Kappa coefficient is 0.9143.展开更多
Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration pr...Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration program is to identify the most effective source intervals or kitchens in a basin, through oil-source correlation. The results of correlation are valid only if the geochemical parameters used address adequately the genetic characteristics of the source rocks as well as the mass transport and mixing processes of hydrocarbon fluids occurring in the carrier beds and reservoirs. This manuscript discusses four of the major contentious petroleum geochemical issues in China’s sedimentary basins. It is suggested that marine incursions played a significant role in the formation of prolific petroleum source rocks in the gigantic, dominantly freshwater, Songliao Basin. Several models are proposed to account for the occurrence of immature oils in the Cathaysian rift system including the Bohai Bay Basin, thus immature source rocks are considered a mere minor contributor to the known economic immature oil resources. Both geological and geochemical evidence are reviewed to refute a dominantly coaly source for the petroleum discovered in the Turpan Basin. Results of case studies are presented to demonstrate the importance of recognizing petroleum fluid mixing to solve the oil-source correlation issues in the structurally complex Tarim Basin. In addressing the fundamental assumptions and potential flaws of the molecular geochemical parameters commonly used for oil-source correlation, the need of a mass fraction approach is proposed to deal with such contentious issues as marine versus lacustrine, coal versus lacustrine, and mature versus immature oils.展开更多
Based on the systematic study of aromatic hydrocarbons in over 100 crude oil samples collected from the Tabei and Tazhong uplifts in the Tarim Basin,the western depression area in the Qaidam Basin and the Tabei depres...Based on the systematic study of aromatic hydrocarbons in over 100 crude oil samples collected from the Tabei and Tazhong uplifts in the Tarim Basin,the western depression area in the Qaidam Basin and the Tabei depression in the Turpan Basin,the geochemical characteristics of the marine(Tarim Basin),saline lacustrine(Qaidam Basin),and swamp(Turpan Basin) oils were investigated.The marine oils from the Tarim basin are characterized by relatively low abundance of diaromatic hydrocarbons such as biphenyl and naphthalene,and relatively high abundance of triaromatic hydrocarbons including phenanthrene,dibenzothiophene and fluorene.In contrast,the swamp oils from the Turpan Basin are dominated by the highest relative abundance of diaromatic hydrocarbons and the lowest relative abundance of triaromatic hydrocarbons in all the oil samples in this study.The relative abundance of diaromatic and triaromatic hydrocarbons in the saline lacustrine oils from Qaidam Basin is between that in Tarim oils and Turpan oils.Aromatic parameters based on the isomer distributions of dimethylnaphthalenes(DMN),trimethylnaphthalenes(TMN),tetramethylnaphthalenes(TeMN) and methylphenanthrenes(MP),i.e.,1,2,5-trimethylnaphthalene(TMN)/1,3,6-TMN ratio,1,2,7-TMN/1,3,7TMN ratio,(2,6-+2,7-)-dimethylnaphthalenes(DMN)/1,6-DMN ratio,1,3,7-TMN/(1,2,5-+1,3,7-)TMN,1,3,6,7-TeMN/(1,3,6,7-+1,2,5,6-+1,2,3,5-)-TeMN ratio and MP index,may reflect the diversity of organic source input,thermal maturity and depositional environments.In addition,the dibenzothiophenes(DBTs)/fluorenes(Fs) and dibenzofurans(DBFs)/Fs ratios were found to the very useful and effective in determining genetic types of crude oils for the marine,saline lacustrine,and swamp depositional environments,and for oil-oil correlations.展开更多
Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum syste...Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.展开更多
Based upon the recent research on the Circum- Pacific geology and sedimentary basins a review of the time - space evolution of Mesozoic and Cenozoic basic and their geodynamic background are outlined. The foreland-ty...Based upon the recent research on the Circum- Pacific geology and sedimentary basins a review of the time - space evolution of Mesozoic and Cenozoic basic and their geodynamic background are outlined. The foreland-type basins originated mainly in Late Triassic during the convergence of East Tethys and the continental collision, while the extensional and transform-extensional basins formed mainly in the Eastern China in Late Mesozoic and Cenozoic. They are closely related to the subduction Process of Pacific Plate from eat and the collision from southwest. As a sighficat indicator of deep Process of the Earth, the igneous rocks and magmatism offer very important information for the basin dynamic analysis. The evolution of the basins in East China were controlled by the combination and alternation effects from the surrounding Plates of Eurasia and the deep Process.展开更多
The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the...The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.展开更多
文摘? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in the basins, and reveals a basic framework of the geothermal regime of the basins. The geothermal regime of Meso-Cenozioc basins in East China is mainly dominated by tectonic conditions. The important factor determining the geothermal state of basins is the thickness of lithosphere—burial depth of asthenospheric top, which is related to geodynamic type of basins. Basins in the western zone, represented by Sichuan and Ordos, belong to the flexure basins on the basement of continental block, with thick lithosphere, generally 120-150 km. All basins in this zone fall into middle heat basin type in the light of their lower ancient and present geotemperature gradient. While the middle zone is represented by Songliao and Bohaiwan basins, the continental margin zone is represented by East China Sea shelf basin and northern continental shelf basins of South China Sea. They belong to the extensional basins with thinning lithosphere, the smallest burial depth of paleoasthenospheric top, being 55-60 km. Therefore they should belong to heat basin type. The geothermal state of the basins is correlated positively with extension degree in the majority of basins controlled by dynamic mechanism of extension and transtension.
文摘A regional study connecting geolelectrical surveys with geology and hydrogeology was carried out in the western part of the Iullemmeden basin, precisely in the Dosso region in Niger. One hundred and four (104) vertical electrical sounds have been realized, among them nineteen representative were thus be used as parametric surveys. The local resistivity values of the geological formations of Quaternary range from 100 Ω⋅m to 1000 Ω⋅m (sands and lateritic sandstones). The Oligo-Miocene formation of the Continental terminal (Ct) shows resistivity values ranging from 1 to 5 Ω⋅m (brackish groundwaters) to 1500 Ω⋅m (clay sandstones) while the Upper Cretaceous formation of the Continental “hamadien” (Ch) indicates values ranging from 20 Ω⋅m (sandy clay) to 5000 Ω⋅m (clayey sandstones). The geological formations of Paleocene have values from 2 Ω⋅m (marls) to 60 Ω⋅m (calcareous marl), while the Precambrian basement exhibits values of granite around 300 Ω⋅m to 60,000 Ω⋅m. The update of the structural settings reveals many faults in the study area which explain both the shape of the basin and the geometry of the aquifers. Tectonics is also consistent with the hydraulic characteristics of aquifers. In addition, brackish groundwaters were identified as perched aquifer groundwaters in different depths in Dosso region. They probably come from the marine brines during the regression of the Paleocene Sea.
文摘Abstract: There are a group of large and medium-scale Meso-Cenozoic petroliferous basins along both sides of the Tanlu fault or within the fault zone, e.g., the Songliao basin, the Bohai Bay basin and the Subei-Yellow Sea basin. As shown by studies of the structural types, sedimentary formations, volcanic activities, tectonic evolution as well as the time-space relationship between the Tanlu fault zone and the basins, the formation and distribution of the basins are controlled by the movement of the Tanlu fault. This paper presents an analysis of the tectono-geometric, kinematic and geodynamic features of the basins on the basis of integrated geological-geophysical data, and an exploration into the internal relations between the fault and the basins as well as the formation mechanism and geodynamic processes of the basins.
文摘?The unequal spacetime distribution of the source rocks resulted from the mutual superimposition of the biota evolution, basin type, and paleoclimatic change. The basin type is the most important in controlling the distribution of source rocks. The effect of the paleoclimate on the source rocks varied with different basins. In the rift basin, the source rocks were accumulated in the humid, semihumid and semiarid climates; however, in the flexural basin, only in the humid and semihumid climates. The biota features may control, to a great extent, the distribution pattern and the sourcerock quality. The abundance of the terrestrial flora and lacustrine phytoplankton was essential for the generation of the Meso-Cenozoic source rocks on a large scale.
文摘In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modem large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic-early Lower Cretaceous Taebo System, and the Upper Cretaceous-Paleocene ( Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e. g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-beating beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.
基金financially supported by The National Special Project for Marine Geology(DD20160147)the National Basic Research Program of China(973 program+1 种基金 Grant No.2013CB429701)the National Natural Science Foundation of China(Grant No.41210005)
文摘The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso- Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of igneous rocks. We preliminarily defined the coupling relation between magnetic anomalies and igneous rock bodies. Some igneous complexes were also recognized by using multi-channel seismic and drilling data. We identified various intrusive and extrusive igneous rock bodies, such as stocks, sills, dikes, laccoliths and volcanic edifice relics through seismic facies analysis. We also forecasted the distribution characteristics of igneous complexes. More than fifty hypabyssal intrusions and volcanic relics were delineated based on the interpretation of magnetic anomaly and dense intersecting multi-channel seismic data. It is an important supplement to regional geology and basin evolution research. Spatial matching relations between igneous rock belts and fractures document that extensional N-E and N-NE-trending deep fractures may be effective pathways for magma intrusion. These fractures formed under the influence of regional extension during the Meso- Cenozoic after the Indosinian movement. Isotopic ages and crosscutting relations between igneous rock bodies and the surrounding bedded sedimentary strata both indicate that igneous activities might have initiated during the Late Jurassic, peaked in the Early Cretaceous, gradually weakened in the Late Cretaceous, and continued until the Miocene. Combined with previous studies, it is considered that the Meso-Cenozoic igneous activities, especially the intensive igneous activity of the Early Cretaceous, are closely associated with the subduction of the Paleo-Pacific Plate.
基金funded by the National Natural Science Foundation of China (Grant Nos.41402219, 41302202,41125010,41302202,and 91114202)
文摘The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigations of its Mesozoic and Cenozoic lithospheric thermal structure are limited. Therefore, in this study,the distributions of mantle heat flow, crustal heat flow, and Moho temperatures during the Meso-Cenozoic are calculated based on analyses of the thermal history of the Bohai Bay Basin. The results indicate that the ratio of mantle heat flow to surface heat flow peaked during the late stages of the early Cretaceous and during the middle to late Paleogene. The corresponding mantle heat flow was more than 65% of the surface heat flow. Moho temperatures reached three peaks: 900-1100℃ in the late stages of the early Cretaceous;820-900℃ in the middle to late Paleogene; and(in the Linqing Depression, Cangxian Uplift, and Jizhong Depression) 770-810℃ during the early Neogene. These results reveal that the Bohai Bay Basin experienced significant geological change during the Cretaceous, including the transformation of lithospheric thermal structure from "cold mantle and hot crust" before the Cretaceous to "hot mantle and cold crust" after the Cretaceous. The results also indicate that the basin experienced two large-scale rifting events.Therefore, this work may provide the thermal parameters for further investigations of the geodynamic evolution of eastern China.
基金supported by National Natural Science Foundation of China(Grant Nos.42372239,41872237 and 41573023)the projects of China Geological Survey(Grant Nos.DD20160180,DD20190083,DD20190043,DD20221633)。
文摘Indicating the tectonic features of the Hanshan-Wuwei basin can reconstruct the framework of the basins formed in Mesozoic and further understand the Mesozoic tectonic evolution of the South China Block.Studies on surface structure,regional stress field and deep geophysical characteristics of the Mesozoic Hanshan-Wuwei basin in Lower Yangtze region were carried out.NE-NNE trending folds and faults developed in the northern margin of the basins.The reconstruction of tectonic stress fields indicates four stress stages dominating the basins'evolution including NW-SE compression,N-S compression,NW-SE extension and NWW-SEE compression.2D seismic profiles reveal coexistence of thrust,strike-slip and normal faults in the basin.Combined with regional geological studies,the geodynamic processes for the formation of the Hanshan-Wuwei basin can be divided into five stages:1)During the Late Triassic,EW trending foreland basin was formed by N-S compression;2)From Mid-Jurassic to Late Jurassic,continuous compression strengthened the foreland deformation and formed thrust nappes.In this stage,the integrated foreland basin was compartmentalized or fragmented,and transferred to the broken foreland basin;3)NE-trending sinistral strike-slip movement at the beginning of the Early Cretaceous;4)Regional extension resulted in normal faults and rift basins developing in the Late Cretaceous;5)The NWW-SEE compression at the end of the Late Cretaceous caused NW sinistral strike-slip faults to form,which partly transformed the rift basin.
基金supported by the National Key Research and Development Plan project“Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development”under contract No.2017YFC0602202。
文摘The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.
基金Supported by the Strategic Research and Technical Consultation Project of Sinopec Science and Technology CommissionSinopec Major Science and Technology Project(P22037)。
文摘By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.
文摘Volcanic arcs such as the Barisan Mountains have been identified as attractive areas for the utilization of geothermal energy,as exemplified by Ulubelu in Lampung and Sarulla in North Sumatra.However,environmental factors in the Barisan Mountains remain a primary obstacle to the exploration and exploitation of geothermal energy.The back-arc basins of Sumatra exhibit the highest heat flow worldwide;however,the heat source in this area remains a controversial issue.This study aims to investigate the origin of the high heat flow in the back-arc basins of Sumatra(North,Central,and South Sumatra basins)based on geothermal data from 384 oil wells and the current literature for geological evaluation.The findings of this study indicate that the back-arc basins of Sumatra experienced severe extensional deformation during the Tertiary Period through a large pull-apart and slab rollback mechanism.This deformation resulted in the thinning of the continental crust in this region(27-32 km)and the formation of multiple normal faults.Consequently,the presence of magma resulting from mantle upwelling implies a high heat flow in the back-arc basins of Sumatra.This condition ranks the back-arc basins of Sumatra among the highest heat flow regions of the world,with heat flows>100 mW/m^(2).These findings indicate that the back-arc basins of Sumatra have significant opportunities to exploit their geothermal energy potential.This study provides novel insights into the potential of geothermal energy,particularly in the back-arc basins of Sumatra.
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
基金The Natural gas formation rules and key technologies for exploration in the western exploration area KT2022A02the Science and Technology Fundamental Resources Investigation Program under contract No. 2023FY101500+2 种基金the National Key Research and Development Program of China under contract No. 2023YFC3012005the Central Public-interest Scientific Institution Basal Researchunder contract No. CEAIEF20230505。
文摘At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.
文摘In the Saharian domain, the Tarfaya-Laayoune coastal basin developed in a stable passive margin, where asymmetrical sedimentation increase from East to West and reach a sediment stack of about 14 kilometers. However, the morphology of the studied area corresponds to a vast plateau (hamada) presenting occasional major reliefs. For this purpose, remote sensing approach has been applied to find the best approaches for truthful lithological mapping. The two supervised classification methods by machine learning (Artificial Neural Network and Spectral Information Divergence) have been evaluated for a most accurate classification to be used for our lithofacies mapping. The latest geological maps and RGB images were used for pseudo-color groups to identify important areas and collect the ROIs that will serve as facilities samples for the classifications. The results obtained showed a clear distinction between the various formation units, and very close results to the field reality in the ANN classification of the studied area. Thus, the ANN method is more accurate with an overall accuracy of 92.56% and a Kappa coefficient is 0.9143.
文摘Petroleum geochemistry contributes to exploration successes by providing key constraints for geological models and critical input to exploration scenarios. One of the most important tasks in a typical exploration program is to identify the most effective source intervals or kitchens in a basin, through oil-source correlation. The results of correlation are valid only if the geochemical parameters used address adequately the genetic characteristics of the source rocks as well as the mass transport and mixing processes of hydrocarbon fluids occurring in the carrier beds and reservoirs. This manuscript discusses four of the major contentious petroleum geochemical issues in China’s sedimentary basins. It is suggested that marine incursions played a significant role in the formation of prolific petroleum source rocks in the gigantic, dominantly freshwater, Songliao Basin. Several models are proposed to account for the occurrence of immature oils in the Cathaysian rift system including the Bohai Bay Basin, thus immature source rocks are considered a mere minor contributor to the known economic immature oil resources. Both geological and geochemical evidence are reviewed to refute a dominantly coaly source for the petroleum discovered in the Turpan Basin. Results of case studies are presented to demonstrate the importance of recognizing petroleum fluid mixing to solve the oil-source correlation issues in the structurally complex Tarim Basin. In addressing the fundamental assumptions and potential flaws of the molecular geochemical parameters commonly used for oil-source correlation, the need of a mass fraction approach is proposed to deal with such contentious issues as marine versus lacustrine, coal versus lacustrine, and mature versus immature oils.
基金funded by the National Natural Science Foundation of China (Grant No. 40973041)
文摘Based on the systematic study of aromatic hydrocarbons in over 100 crude oil samples collected from the Tabei and Tazhong uplifts in the Tarim Basin,the western depression area in the Qaidam Basin and the Tabei depression in the Turpan Basin,the geochemical characteristics of the marine(Tarim Basin),saline lacustrine(Qaidam Basin),and swamp(Turpan Basin) oils were investigated.The marine oils from the Tarim basin are characterized by relatively low abundance of diaromatic hydrocarbons such as biphenyl and naphthalene,and relatively high abundance of triaromatic hydrocarbons including phenanthrene,dibenzothiophene and fluorene.In contrast,the swamp oils from the Turpan Basin are dominated by the highest relative abundance of diaromatic hydrocarbons and the lowest relative abundance of triaromatic hydrocarbons in all the oil samples in this study.The relative abundance of diaromatic and triaromatic hydrocarbons in the saline lacustrine oils from Qaidam Basin is between that in Tarim oils and Turpan oils.Aromatic parameters based on the isomer distributions of dimethylnaphthalenes(DMN),trimethylnaphthalenes(TMN),tetramethylnaphthalenes(TeMN) and methylphenanthrenes(MP),i.e.,1,2,5-trimethylnaphthalene(TMN)/1,3,6-TMN ratio,1,2,7-TMN/1,3,7TMN ratio,(2,6-+2,7-)-dimethylnaphthalenes(DMN)/1,6-DMN ratio,1,3,7-TMN/(1,2,5-+1,3,7-)TMN,1,3,6,7-TeMN/(1,3,6,7-+1,2,5,6-+1,2,3,5-)-TeMN ratio and MP index,may reflect the diversity of organic source input,thermal maturity and depositional environments.In addition,the dibenzothiophenes(DBTs)/fluorenes(Fs) and dibenzofurans(DBFs)/Fs ratios were found to the very useful and effective in determining genetic types of crude oils for the marine,saline lacustrine,and swamp depositional environments,and for oil-oil correlations.
文摘Through an integrated study of Mesozoic and Palaeozoic petroleum geology insouthern China and a summing-up of the results of exploration, the authors tentatively put forward aset of methods of studying petroleum systems in modified residual basins or superposed basins. Itscore idea is to put emphasis on the study of the dynamic evolution of petroleum systems. Thetempo-spatial evolution, hydrocarbon-generating processes and hydrocarbon-generating intensities andamounts of resources in different geological stages of chief source rocks are mainly deducedbackward by 3-D basin modelling. The regularities of formation and destruction of oil and gasaccumulations are summarized by analyzing the fossil and existing oil and gas accumulations, thedirection of migration is studied by palaeo-structural analysis, and the dynamic evolution ofPalaeozoic and Mesozoic petroleum systems in southern China is studied according to stages of majortectonic movements. The authors suggest that the realistic exploration targets of Palaeozoic andMesozoic petroleum systems in southern China are secondary and hydrocarbon-regeneration petroleumsystems, while the existing primary petroleum systems are rare. They propose that the favourableareas for exploration of Palaeozoic and Mesozoic petroleum systems in southern China are the frontarea of the Daba Mountains and the steep anticlinal zone on the western side of the Shizhusynclinorium in northeastern Sichuan, the Funin-Yancheng-Hai'an-Xinghua-Baoying area in the northernJiangsu basin, the Qianjiang-Xiantao-Paizhou-Chacan 1 well area in the southern part of the Chenhuarea of the Jianghan basin, the South Poyang basin in Jiangxi and the North subbasin of the Chuxiongbasin. This view has been supported by the discovery of the Zhujiadun gas field in the Yanchengsubbasin of the northern Jiangsu basin and the Kaixiantaixi oil-bearing structure in the southernpart of the Chenhu area of the Jianghan basin.
文摘Based upon the recent research on the Circum- Pacific geology and sedimentary basins a review of the time - space evolution of Mesozoic and Cenozoic basic and their geodynamic background are outlined. The foreland-type basins originated mainly in Late Triassic during the convergence of East Tethys and the continental collision, while the extensional and transform-extensional basins formed mainly in the Eastern China in Late Mesozoic and Cenozoic. They are closely related to the subduction Process of Pacific Plate from eat and the collision from southwest. As a sighficat indicator of deep Process of the Earth, the igneous rocks and magmatism offer very important information for the basin dynamic analysis. The evolution of the basins in East China were controlled by the combination and alternation effects from the surrounding Plates of Eurasia and the deep Process.
文摘The stretching process of some Tertiary rift basins in eastern China is characterized by multiphase rifting. A multiple instantaneous uniform stretching model is proposed in this paper to simulate the formation of the basins as the rifting process cannot be accurately described by a simple (one episode) stretching model. The study shows that the multiphase stretching model, combined with the back-stripping technique, can be used to reconstruct the subsidence history and the stretching process of the lithosphere, and to evaluate the depth to the top of the asthenosphere and the deep thermal evolution of the basins. The calculated results obtained by applying the quantitative model to the episodic rifting process of the Tertiary Qiongdongnan and Yinggehai basins in the South China Sea are in agreement with geophysical data and geological observations. This provides a new method for quantitative evaluation of the geodynamic process of multiphase rifting occurring during the Tertiary in eastern China.