Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these ...Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these polymers was examined using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Their liquid crystallinity is influenced by the variation of polymer backbone, spacer, mesogenic unit and its terminal groups. The results show that 1) a more flexible polymer main-chain is more favorable to the formation of a liquid crystal phase, while 2) a flexible spacer will decrease the 'Jacket Effect' and the liquid crystallinity and 3) a subtle modification of the terminal groups on the mesogenic unit may also have a significant influence on properties of the polymers.展开更多
We provide an analytical study on the stability of equilibria of rigid rodlike nematic liquid crystalline polymers (LCPs) governed by the Smoluchowski equation with the Maier-Saupe intermolecular potential. We simpl...We provide an analytical study on the stability of equilibria of rigid rodlike nematic liquid crystalline polymers (LCPs) governed by the Smoluchowski equation with the Maier-Saupe intermolecular potential. We simplify the expression of the free energy of an orientational distribution function of rodlike LCP molecules by properly selecting a coordinate system and then investigate its stability with respect to perturbations of orientational probability density. By computing the Hessian matrix explicitly, we are able to prove the hysteresis phenomenon of nematic LCPs: when the normalized polymer concentration b is below a critical value b* (6.T314863965), the only equilibrium state is isotropic and it is stable; when b* 〈 b 〈 15/2, two anisotropic (prolate) equilibrium states occur together with a stable isotropic equilibrium state. Here the more aligned prolate state is stable whereas the less aligned prolate state is unstable. When b 〉 15/2, there are three equilibrium states: a stable prolate state, an unstable isotropie state and an unstable oblate state.展开更多
The synthesis of rod-coil diblock copolymers was achieved for the first time by TEMPO-mediated 'living' free radical polymerization of styrene and 2,5-bis [(4-methoxyphenyl)oxycarbonyl] styrene(MPCS). The blo...The synthesis of rod-coil diblock copolymers was achieved for the first time by TEMPO-mediated 'living' free radical polymerization of styrene and 2,5-bis [(4-methoxyphenyl)oxycarbonyl] styrene(MPCS). The block architecture of the two diblock copolymers thus prepared, MPCS-b-St(5400/2400) and MPCS-b-St(10800/8700), was confirmed by GPC, DSC studies and the formation of multimolecular micelles. (Author abstract) 10 Refs.展开更多
Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were c...Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(I) yielded target polyesters with 1,2,3-triazole groups.The structure of the polymer was confirmed by spectral techniques.GPC analysis reveals that the polymers have moderate molecular weight with narrow distribution.H...展开更多
The transitions and morphology of a series of main-chain liquid crystalline polymer with X-shaped mesogens were studied by means of DSC,SALS and polarizing microscopy techniques. Aneven-odd effect was observed for sam...The transitions and morphology of a series of main-chain liquid crystalline polymer with X-shaped mesogens were studied by means of DSC,SALS and polarizing microscopy techniques. Aneven-odd effect was observed for samples with different size of the substituents on the mesogenends. The isotropization process was similar to that of main-chain polymers with rod-likemesogens. No crystallization was detected for specimens cooling down from their isotropic meltstate. However two of the samples may crystallize in cooling process directly from the liquidcrystalline state.展开更多
The present paper covers the synthesis and characterization of several intermediate products, monomer, and polymers. 3-{ 2-[ 4-( 4-Nitrophenylazo ) phenoxy] ethyloxycarbonyl} propanoyloxy (2-hydroxy) propyl acrylate (...The present paper covers the synthesis and characterization of several intermediate products, monomer, and polymers. 3-{ 2-[ 4-( 4-Nitrophenylazo ) phenoxy] ethyloxycarbonyl} propanoyloxy (2-hydroxy) propyl acrylate (4) was prepared by the ring-opening reaction of glycidyl acrylate with the monoester of succinic acid (3). The polymers (5) with different molecular weights were prepared by the free-radical polymerization. The polymers (5) had liquid crystalline behavior without decomposition as revealed by DSC, optical microscope.展开更多
The lamellar structure of a thermotropic aromatic polyester with flexible spacer has beenstudied by using transmission electron microscopy. It was found that the lamellar structure couldbe observed in the crystalline ...The lamellar structure of a thermotropic aromatic polyester with flexible spacer has beenstudied by using transmission electron microscopy. It was found that the lamellar structure couldbe observed in the crystalline samples of this semirigid polymer crystallized from different states.The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymersof flexible chain molecules. The molecular chains in the lamellae are oriented in the thicknessdirection as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.展开更多
The synthesis and characterization of a new series of liquid crystalline polymers, poly(dicycloalkylvinylterephthalate)s, are reported. The basic building blocks of these polymers are not mesogenic by themselves. Howe...The synthesis and characterization of a new series of liquid crystalline polymers, poly(dicycloalkylvinylterephthalate)s, are reported. The basic building blocks of these polymers are not mesogenic by themselves. However,very stable mesophases can be generated by self-assembly of the polymer molecules. This approach suggests a novel designstrategy of liquid crystalline polymers with flexible and apolar building blocks.展开更多
The first TEMPO-mediated 'living' free radical polymerization of liquid crystalline monomer, 2, 5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS), was carried out at 130 degrees C with BPO as an initiator. The...The first TEMPO-mediated 'living' free radical polymerization of liquid crystalline monomer, 2, 5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS), was carried out at 130 degrees C with BPO as an initiator. The molecular weight of the polymer can be varied from rather low values to high values while maintaining narrow polydispersity. It was observed that the polymerization of MPCS proceeded much faster than that of styrene. A tentative explanation for this fast polymerization was suggested.展开更多
Chiral liquid crystalline polymers containing biphenylene and azobenzene as the mesogensand S(-)-2-methyl-1-butanol as the chiral end group were synthesized and characterized by DSC,POM and X-ray diffraction. These po...Chiral liquid crystalline polymers containing biphenylene and azobenzene as the mesogensand S(-)-2-methyl-1-butanol as the chiral end group were synthesized and characterized by DSC,POM and X-ray diffraction. These polymers show crystalline or glassy liquid crystalline phase atroom temperature. Most polymers show smectic A or highly ordered smectic phases abovemelting temperature.展开更多
The orientation of crystals in liquid crystalline polymers (LCPs) during the processing method affects the properties of these materials. In this paper, the main components of modeling the directionality of LCPs, name...The orientation of crystals in liquid crystalline polymers (LCPs) during the processing method affects the properties of these materials. In this paper, the main components of modeling the directionality of LCPs, namely Franks elastic energy equation, evolution equation and translation of directors are studied. The complexity of flow channels in polymer processing requires a more robust method for modeling directionality that can be applied to varieties of meshes. A method for practically simulating the directionality of crystallines on a macroscopic scale is developed. This method can be applied to any combination and type of meshes. The results show successful modeling of the directionality for each component of the model. Here, a 2D case with structured and unstructured mesh is considered and the rheology is simulated using ANSYS? FLUENT?. C++ codes written for user defined functions (UDFs) are used to implement the directionality simulation.展开更多
Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes pl...Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.展开更多
New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms ...New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.展开更多
Poly{2,5-bis[(p-methoxyphenyl)oxycarbonyl]styrene}was successfully synthesized.This new polymer has a structure characteristic of mesogen-jacketed liquid cyrstalline polymers(MJLCPs)and does form a liquid crystal phas...Poly{2,5-bis[(p-methoxyphenyl)oxycarbonyl]styrene}was successfully synthesized.This new polymer has a structure characteristic of mesogen-jacketed liquid cyrstalline polymers(MJLCPs)and does form a liquid crystal phase above its glass transition.It thus became the starting member of a new series of MJLCPs.The synthesis of the polymer as well as the liquid crystalline properties of the polymer and its monomer was discussed.A brief comparison of the new monomer and polymer with some previously reported counterparts was also included.展开更多
A new continuum theory of the constitutive equation of co-rotational derivative type is developed for anisotropic viscoelastic fluid—liquid crystalline (LC) polymers. A new concept of simple anisotropic fluid is intr...A new continuum theory of the constitutive equation of co-rotational derivative type is developed for anisotropic viscoelastic fluid—liquid crystalline (LC) polymers. A new concept of simple anisotropic fluid is introduced. On the basis of principles of anisotropic simple fluid, stress behaviour is described by velocity gradient tensor and spin tensor instead of the velocity gradient tensor in the classic Leslie—Ericksen continuum theory. Analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equ- ation of co-rotational type is established for the fluid. A special term of high order in the equation is introduced by author to describe the sp- ecial change of the normal stress differences which is considered as a result of director tumbling by Larson et al. Analyzing the experimental results by Larson et al., a principle of Non- oscillatory normal stress is introduced which leads to simplification of the problem with relaxation times. The special behaviour of non- symmetry of the shear stress is predicted by using the present model for LC polymer liquids. Two shear stresses in shear flow of LC polymer liquids may lead to vortex and rotation flow, i.e. director tumbling in the flow. The first and second normal stress differences are calculated by the model special behaviour of which is in agree- ment with experiments. In the research, the com- putational symbolic manipulation such as computer software Maple is used. For the anisotropic viscoelastic fluid the constitutive equation theory is of important fundamental significance.展开更多
A wholly-aromatic thermotropic liquid crystalline polymer (WATLCP) composed of p-hydroxybenzoic acid (HBA), 4,4'-dihydroxy bisphenyl (BP), terephthalic acid (TPA), m-phthalic acid (MPA) was synthesized. It was sym...A wholly-aromatic thermotropic liquid crystalline polymer (WATLCP) composed of p-hydroxybenzoic acid (HBA), 4,4'-dihydroxy bisphenyl (BP), terephthalic acid (TPA), m-phthalic acid (MPA) was synthesized. It was symbolized by BP-LCP. Using a similar method, a new copolymer BP-PSF was prepared. BP-PSF has a semi-flexible chain polysulfone and a rigid-rod chain like BP-LCP. By FT-IR, polarizing microscope and DSC technique, the structures and properties of BP-LCP and BP-PSF were studied.展开更多
Polymer strands with various draw ratios of a thermotropic liquid crystalline polymer (LCP) and modified poly(phenylene oxide) were prepared by drawing the melts leaving a slit die in open air. The morphology, structu...Polymer strands with various draw ratios of a thermotropic liquid crystalline polymer (LCP) and modified poly(phenylene oxide) were prepared by drawing the melts leaving a slit die in open air. The morphology, structure and mechanical properties of the resulting strands were studied as a function of LCP content and draw ratio. It was found that the thermal and mechanical properties of the matrix phase did not change dramatically with the amount of LCP and draw ratio, but the orientation of LCP phase could be increased with draw ratio. The mechanical properties of the strands could be improved by moderately drawing the melts. Wide angle X-ray diffraction suggested that the improvement in tensile strength of the strands was due to the resultant fibrillation of LCP phase and enhanced molecular orientation. Morphological observation indicated that excessive drawing of the strands could lead to the break down of the microfibrils of LCP and thus resulted in the decrease of mechanical strength.展开更多
The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found t...The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found to be composed of the initiation of a new phase at local places of the old phase matrix and the growth of the new phase: domains. The kinetics of the liquid-crystallization of the polymer from an isotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can be described by the Avrami equation. The values of the Avrami exponent were found to be around 2.6. which is lower than the value usually obtained for crystallization transition of polymers, but larger than that reported for liquid-crystallization transition of main-chain polymers. These results may indicate the difference in growth geometry of new phase during transition between crystallization and liquid-crystallization in general and between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquid-crystallization of the used side-chain polymethacrylate may occur at small undercoolings with high transformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while the crystallization of polymers can only proceed at large undercoolings. These phenomena can be explained by the idea that the surface free energy of nucleus during liquid-crystallization transition is less than that for crystallization, and evidence was obtained from analysis of the temperature dependence of the transformation rate.展开更多
A novel engineering thermoplastic, phenolphthalein poly(ether ether sulfone)(PES C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheom...A novel engineering thermoplastic, phenolphthalein poly(ether ether sulfone)(PES C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS Ⅱ) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone and plate geometry give a temperature independent correlation for both blend and PES C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.展开更多
The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rin...The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture was observed in the transition temperature range. Similar to main-chain liquid crystalline polymers the transition process of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at local places of the old phase matrix and a growth process of the new phase domains.展开更多
基金This Project was supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China (No. 59873001).
文摘Some new mesogen-jacketed liquid crystalline polymers (MJLCP) with polymer backbones, spacers, and mesogenic units of different structures were synthesized by radical polymerization. The mesomorphic behavior of these polymers was examined using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Their liquid crystallinity is influenced by the variation of polymer backbone, spacer, mesogenic unit and its terminal groups. The results show that 1) a more flexible polymer main-chain is more favorable to the formation of a liquid crystal phase, while 2) a flexible spacer will decrease the 'Jacket Effect' and the liquid crystallinity and 3) a subtle modification of the terminal groups on the mesogenic unit may also have a significant influence on properties of the polymers.
基金supported by the National Science Foundation and by the Office of Naval Research
文摘We provide an analytical study on the stability of equilibria of rigid rodlike nematic liquid crystalline polymers (LCPs) governed by the Smoluchowski equation with the Maier-Saupe intermolecular potential. We simplify the expression of the free energy of an orientational distribution function of rodlike LCP molecules by properly selecting a coordinate system and then investigate its stability with respect to perturbations of orientational probability density. By computing the Hessian matrix explicitly, we are able to prove the hysteresis phenomenon of nematic LCPs: when the normalized polymer concentration b is below a critical value b* (6.T314863965), the only equilibrium state is isotropic and it is stable; when b* 〈 b 〈 15/2, two anisotropic (prolate) equilibrium states occur together with a stable isotropic equilibrium state. Here the more aligned prolate state is stable whereas the less aligned prolate state is unstable. When b 〉 15/2, there are three equilibrium states: a stable prolate state, an unstable isotropie state and an unstable oblate state.
基金This project was supported by the Foundation of Peking University for Young Scientist and the National Natural Science Foundation of China.
文摘The synthesis of rod-coil diblock copolymers was achieved for the first time by TEMPO-mediated 'living' free radical polymerization of styrene and 2,5-bis [(4-methoxyphenyl)oxycarbonyl] styrene(MPCS). The block architecture of the two diblock copolymers thus prepared, MPCS-b-St(5400/2400) and MPCS-b-St(10800/8700), was confirmed by GPC, DSC studies and the formation of multimolecular micelles. (Author abstract) 10 Refs.
文摘Liquid crystalline polymers containing 1,2,3-triazole units as linking groups have been synthesized from the monomers containing triad ester diazide and flexible dialkyne ester by 1,3-cycloaddition reaction and were characterized. Click reaction of azide and alkyne functionals catalyzed by Cu(I) yielded target polyesters with 1,2,3-triazole groups.The structure of the polymer was confirmed by spectral techniques.GPC analysis reveals that the polymers have moderate molecular weight with narrow distribution.H...
基金This work was supported by the National Natural Science Foundation of China(Grant No.29,070,196)and the Science Foundation of Polymer Physics Laboratory,Academia Sinica.
文摘The transitions and morphology of a series of main-chain liquid crystalline polymer with X-shaped mesogens were studied by means of DSC,SALS and polarizing microscopy techniques. Aneven-odd effect was observed for samples with different size of the substituents on the mesogenends. The isotropization process was similar to that of main-chain polymers with rod-likemesogens. No crystallization was detected for specimens cooling down from their isotropic meltstate. However two of the samples may crystallize in cooling process directly from the liquidcrystalline state.
文摘The present paper covers the synthesis and characterization of several intermediate products, monomer, and polymers. 3-{ 2-[ 4-( 4-Nitrophenylazo ) phenoxy] ethyloxycarbonyl} propanoyloxy (2-hydroxy) propyl acrylate (4) was prepared by the ring-opening reaction of glycidyl acrylate with the monoester of succinic acid (3). The polymers (5) with different molecular weights were prepared by the free-radical polymerization. The polymers (5) had liquid crystalline behavior without decomposition as revealed by DSC, optical microscope.
文摘The lamellar structure of a thermotropic aromatic polyester with flexible spacer has beenstudied by using transmission electron microscopy. It was found that the lamellar structure couldbe observed in the crystalline samples of this semirigid polymer crystallized from different states.The thickness of lamellae is around 10 nm, which is similar to that of the conventional polymersof flexible chain molecules. The molecular chains in the lamellae are oriented in the thicknessdirection as determined by electron diffraction. The possibility of molecular chains folding in the lamellae has been discussed.
基金This research was supported by the National Natural Science Foundation of China (Grants 59873001 and 29992590-4), the Research Fund for Doctoral Program of Higher Education (Grant 99000136) and the Teaching and Research Award Fund for Outstanding Young T
文摘The synthesis and characterization of a new series of liquid crystalline polymers, poly(dicycloalkylvinylterephthalate)s, are reported. The basic building blocks of these polymers are not mesogenic by themselves. However,very stable mesophases can be generated by self-assembly of the polymer molecules. This approach suggests a novel designstrategy of liquid crystalline polymers with flexible and apolar building blocks.
基金This work was supported by the Foundation of Peking University for Young Scientist and the National Natural Science Foundation of China(Grant No.29874003).
文摘The first TEMPO-mediated 'living' free radical polymerization of liquid crystalline monomer, 2, 5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS), was carried out at 130 degrees C with BPO as an initiator. The molecular weight of the polymer can be varied from rather low values to high values while maintaining narrow polydispersity. It was observed that the polymerization of MPCS proceeded much faster than that of styrene. A tentative explanation for this fast polymerization was suggested.
文摘Chiral liquid crystalline polymers containing biphenylene and azobenzene as the mesogensand S(-)-2-methyl-1-butanol as the chiral end group were synthesized and characterized by DSC,POM and X-ray diffraction. These polymers show crystalline or glassy liquid crystalline phase atroom temperature. Most polymers show smectic A or highly ordered smectic phases abovemelting temperature.
文摘The orientation of crystals in liquid crystalline polymers (LCPs) during the processing method affects the properties of these materials. In this paper, the main components of modeling the directionality of LCPs, namely Franks elastic energy equation, evolution equation and translation of directors are studied. The complexity of flow channels in polymer processing requires a more robust method for modeling directionality that can be applied to varieties of meshes. A method for practically simulating the directionality of crystallines on a macroscopic scale is developed. This method can be applied to any combination and type of meshes. The results show successful modeling of the directionality for each component of the model. Here, a 2D case with structured and unstructured mesh is considered and the rheology is simulated using ANSYS? FLUENT?. C++ codes written for user defined functions (UDFs) are used to implement the directionality simulation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21134003,21273048,51225304,and 51203023)Shanghai Outstanding Academic Leader Program,China(Grant No.15XD1500600)
文摘Crosslinked liquid crystalline polymers(CLCPs) are a type of promising material that possess both the order of liquid crystals and the properties of polymer networks.The anisotropic deformation of the CLCPs takes place when the mesogens experience order to disorder change in response to external stimuli; therefore,they can be utilized to fabricate smart actuators,which have potential applications in artificial muscles,micro-optomechanical systems,optics,and energyharvesting fields.In this review the recent development of thermo-and photo-driven soft actuators based on the CLCPs are summarized.
基金This project was supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China(No.59873001).
文摘New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.
基金This work is supported by the National Natural Science Foundation of China.
文摘Poly{2,5-bis[(p-methoxyphenyl)oxycarbonyl]styrene}was successfully synthesized.This new polymer has a structure characteristic of mesogen-jacketed liquid cyrstalline polymers(MJLCPs)and does form a liquid crystal phase above its glass transition.It thus became the starting member of a new series of MJLCPs.The synthesis of the polymer as well as the liquid crystalline properties of the polymer and its monomer was discussed.A brief comparison of the new monomer and polymer with some previously reported counterparts was also included.
文摘A new continuum theory of the constitutive equation of co-rotational derivative type is developed for anisotropic viscoelastic fluid—liquid crystalline (LC) polymers. A new concept of simple anisotropic fluid is introduced. On the basis of principles of anisotropic simple fluid, stress behaviour is described by velocity gradient tensor and spin tensor instead of the velocity gradient tensor in the classic Leslie—Ericksen continuum theory. Analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equ- ation of co-rotational type is established for the fluid. A special term of high order in the equation is introduced by author to describe the sp- ecial change of the normal stress differences which is considered as a result of director tumbling by Larson et al. Analyzing the experimental results by Larson et al., a principle of Non- oscillatory normal stress is introduced which leads to simplification of the problem with relaxation times. The special behaviour of non- symmetry of the shear stress is predicted by using the present model for LC polymer liquids. Two shear stresses in shear flow of LC polymer liquids may lead to vortex and rotation flow, i.e. director tumbling in the flow. The first and second normal stress differences are calculated by the model special behaviour of which is in agree- ment with experiments. In the research, the com- putational symbolic manipulation such as computer software Maple is used. For the anisotropic viscoelastic fluid the constitutive equation theory is of important fundamental significance.
文摘A wholly-aromatic thermotropic liquid crystalline polymer (WATLCP) composed of p-hydroxybenzoic acid (HBA), 4,4'-dihydroxy bisphenyl (BP), terephthalic acid (TPA), m-phthalic acid (MPA) was synthesized. It was symbolized by BP-LCP. Using a similar method, a new copolymer BP-PSF was prepared. BP-PSF has a semi-flexible chain polysulfone and a rigid-rod chain like BP-LCP. By FT-IR, polarizing microscope and DSC technique, the structures and properties of BP-LCP and BP-PSF were studied.
文摘Polymer strands with various draw ratios of a thermotropic liquid crystalline polymer (LCP) and modified poly(phenylene oxide) were prepared by drawing the melts leaving a slit die in open air. The morphology, structure and mechanical properties of the resulting strands were studied as a function of LCP content and draw ratio. It was found that the thermal and mechanical properties of the matrix phase did not change dramatically with the amount of LCP and draw ratio, but the orientation of LCP phase could be increased with draw ratio. The mechanical properties of the strands could be improved by moderately drawing the melts. Wide angle X-ray diffraction suggested that the improvement in tensile strength of the strands was due to the resultant fibrillation of LCP phase and enhanced molecular orientation. Morphological observation indicated that excessive drawing of the strands could lead to the break down of the microfibrils of LCP and thus resulted in the decrease of mechanical strength.
文摘The morphological changes of a side-chain liquid-crystalline polymethacrylate during isotropization and liquid-crystallization transitions were studied by means of polarizing microscopy. These transitions were found to be composed of the initiation of a new phase at local places of the old phase matrix and the growth of the new phase: domains. The kinetics of the liquid-crystallization of the polymer from an isotropic melt to a smectic mesophase was also investigated. The isothermal process of the transition can be described by the Avrami equation. The values of the Avrami exponent were found to be around 2.6. which is lower than the value usually obtained for crystallization transition of polymers, but larger than that reported for liquid-crystallization transition of main-chain polymers. These results may indicate the difference in growth geometry of new phase during transition between crystallization and liquid-crystallization in general and between liquid-crystallization of main-chain and side-chain polymers. It was found that the liquid-crystallization of the used side-chain polymethacrylate may occur at small undercoolings with high transformation rate similar to that of main-chain polymers and small-molecule liquid crystals, while the crystallization of polymers can only proceed at large undercoolings. These phenomena can be explained by the idea that the surface free energy of nucleus during liquid-crystallization transition is less than that for crystallization, and evidence was obtained from analysis of the temperature dependence of the transformation rate.
文摘A novel engineering thermoplastic, phenolphthalein poly(ether ether sulfone)(PES C) was blended with a commercial thermotropic liquid crystalline polymer(TLCP), Vectra A950, up to 30 weight percent of TLCP. A rheometrics dynamic spectrometer (RDS Ⅱ) and a CEAST capillary rheometer, a rheoscope 1000 were employed to investigate the melt rheology and extrusion behaviour at both the low and high shearing rates. The morphologies of the blends under different shearing were observed with a scanning electron microscope(SEM) and correlated to the observed rheology. The principal normal stress differences measured with cone and plate geometry give a temperature independent correlation for both blend and PES C when they are plotted against shear stress. But the extrudate swell of the blends showed a strong temperature dependence at each shear stress. The concentration dependence of extrudate swell shows a contrary behaviour to that of the inorganic filled system. A reasonable hypothesis based on the relaxation and disorientation of TLCP during flowing in the capillary and exiting was given to explain it. The melt fracture was checked after extrusion from capillary and was discussed.
基金The authors are grateful to the Director Foundation of Institute of Chemistry,Chinese Academy of Sciences and Science Foundation of Polymer Physics Laboratory,Chinese Academy of Sciences for supporting this work
文摘The morphological features of a side-chain liquid crystalline polymer during the mesophase transitions were investigated by using the DSC technique. The polymer used was polyacrylate with mesogens of three benzene rings attached to the main chain through a flexible spacer. A special two-phase texture was observed in the transition temperature range. Similar to main-chain liquid crystalline polymers the transition process of the side-chain liquid crystalline polymer was composed of an initiation of the new phase at local places of the old phase matrix and a growth process of the new phase domains.